p-Adic Scaling and Generalized Scaling Sets-Adic Scaling and Generalized Scaling Sets

被引:0
|
作者
Haldar, Debasis [1 ]
机构
[1] NIT Rourkela, Dept Math, Rourkela 769008, Odisha, India
关键词
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic number; scaling set; multiwavelet set; generalized scaling set; WAVELETS;
D O I
10.1134/S2070046625010029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article aims to develop MRA theory along with wavelet theory through corresponding sets in L-2(Q(p)). Generalized scaling sets are important in wavelet theory because they determine (multi)wavelet sets. Although, the theory of scaling sets and generalized scaling sets on R and local fields of positive characteristics are already developed to some extent, but it is yet to be studied on local fields of zero characteristic like Q(p). This article presents necessary conditions for scaling sets with counting formulae for the elements in scaling sets, and characterization of generalized scaling sets with examples.
引用
收藏
页码:16 / 27
页数:12
相关论文
共 50 条
  • [21] GENERALIZED FORMALLY P-ADIC FIELDS
    TRANSIER, R
    ARCHIV DER MATHEMATIK, 1979, 32 (06) : 572 - 584
  • [22] Asymptotic behavior of the scaling entropy of the Pascal adic transformation
    Lodkin A.A.
    Manaev I.E.
    Minabutdinov A.R.
    Journal of Mathematical Sciences, 2011, 174 (1) : 28 - 35
  • [23] Generalized scaling in turbulent flows
    Biferale, L
    Benzi, R
    Pasqui, M
    TURBULENCE MODELING AND VORTEX DYNAMICS, 1997, 491 : 74 - 91
  • [24] Generalized scaling in nonscaling diffusion
    Bershadskii, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 278 (3-4) : 497 - 503
  • [25] Critical points of generalized scaling
    Bershadskii, A
    PHYSICA A, 1999, 268 (1-2): : 142 - 148
  • [26] Generalized cosmological scaling solutions
    Copeland, EJ
    Lee, SJ
    Lidsey, JE
    Mizuno, S
    PHYSICAL REVIEW D, 2005, 71 (02): : 023526 - 1
  • [27] Sets of range uniqueness in p-adic fields
    Boussaf, K.
    Boutabaa, A.
    Escassut, A.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 : 263 - 276
  • [28] SMOOTH POINTS OF P-ADIC SUBANALYTIC SETS
    ROBINSON, Z
    MANUSCRIPTA MATHEMATICA, 1993, 80 (01) : 45 - 71
  • [29] Definable sets, motives and p-adic integrals
    Denef, J
    Loeser, F
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 429 - 469
  • [30] On the compactness of Julia sets of p-adic polynomial
    Bézivin, JP
    MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) : 273 - 289