Computing the sign or the value of the determinant of an integer matrix, a complexity survey

被引:18
|
作者
Kaltofen, E
Villard, G
机构
[1] Ecole Normale Super Lyon, CNRS, Lab LIP, F-69364 Lyon 07, France
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
determinant; bit-complexity; integer matrix; approximate computation; exact computation; randomized algorithms;
D O I
10.1016/j.cam.2003.08.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computation of the sign of the determinant of a matrix and the determinant itself is a challenge for both numerical and exact methods. We survey the complexity of existing methods to solve these problems when the input is an n × n matrix A with integer entries. We study the bit-complexities of the algorithms asymptotically in n and the norm of A. Existing approaches rely on numerical approximate computations, on exact computations, or on both types of arithmetic in combination. © 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 50 条