Computing the sign or the value of the determinant of an integer matrix, a complexity survey

被引:18
|
作者
Kaltofen, E
Villard, G
机构
[1] Ecole Normale Super Lyon, CNRS, Lab LIP, F-69364 Lyon 07, France
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
determinant; bit-complexity; integer matrix; approximate computation; exact computation; randomized algorithms;
D O I
10.1016/j.cam.2003.08.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computation of the sign of the determinant of a matrix and the determinant itself is a challenge for both numerical and exact methods. We survey the complexity of existing methods to solve these problems when the input is an n × n matrix A with integer entries. We study the bit-complexities of the algorithms asymptotically in n and the norm of A. Existing approaches rely on numerical approximate computations, on exact computations, or on both types of arithmetic in combination. © 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 50 条
  • [21] Computing the polar decomposition and the matrix sign decomposition in matrix groups
    Higham, NJ
    Mackey, DS
    Mackey, N
    Tisseur, F
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (04) : 1178 - 1192
  • [22] A new algorithm for computing the inverse and the determinant of a Hessenberg matrix
    Chen, Yue-Hui
    Yu, Cheng-Yi
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4433 - 4436
  • [23] A note on computing the inverse and the determinant of a pentadiagonal Toeplitz matrix
    Lv, Xiao-Guang
    Huang, Ting-Zhu
    Le, Jiang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) : 327 - 331
  • [24] The Complexity of Computing the Random Priority Allocation Matrix
    Saban, Daniela
    Sethuraman, Jay
    MATHEMATICS OF OPERATIONS RESEARCH, 2015, 40 (04) : 1005 - 1014
  • [25] Complexity of Computing the Shapley Value in Games with Externalities
    Skibski, Oskar
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 2244 - 2251
  • [26] A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX
    Kiyak, H.
    Gurses, I.
    Yilmaz, F.
    Bozkurt, D.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (03): : 351 - 363
  • [27] Cloud Computing Service: The Case of Large Matrix Determinant Computation
    Lei, Xinyu
    Liao, Xiaofeng
    Huang, Tingwen
    Li, Huaqing
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2015, 8 (05) : 688 - 700
  • [28] Computing the determinant, adjoining matrix, characteristic polynomial without division
    Sejfullin, T.R.
    Kibernetika i Sistemnyj Analiz, 2002, (05): : 18 - 43
  • [29] A Cubic Algorithm for Computing the Hermite Normal Form of a Nonsingular Integer Matrix
    Birmpilis, Stavros
    Labahn, George
    Storjohann, Arne
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (04)
  • [30] Numerically stable iterative methods for computing matrix sign function
    Rani, Litika
    Kansal, Munish
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 8596 - 8617