Computing the sign or the value of the determinant of an integer matrix, a complexity survey

被引:18
|
作者
Kaltofen, E
Villard, G
机构
[1] Ecole Normale Super Lyon, CNRS, Lab LIP, F-69364 Lyon 07, France
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
determinant; bit-complexity; integer matrix; approximate computation; exact computation; randomized algorithms;
D O I
10.1016/j.cam.2003.08.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computation of the sign of the determinant of a matrix and the determinant itself is a challenge for both numerical and exact methods. We survey the complexity of existing methods to solve these problems when the input is an n × n matrix A with integer entries. We study the bit-complexities of the algorithms asymptotically in n and the norm of A. Existing approaches rely on numerical approximate computations, on exact computations, or on both types of arithmetic in combination. © 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 50 条
  • [1] On computing the determinant and Smith form of an integer matrix
    Eberly, W
    Giesbrecht, M
    Villard, G
    41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, : 675 - 685
  • [2] Computing the matrix sign and absolute value functions
    Ndjinga, Michael
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (1-2) : 119 - 124
  • [3] On the complexity of integer matrix multiplication
    Harvey, David
    van der Hoeven, Joris
    JOURNAL OF SYMBOLIC COMPUTATION, 2018, 89 : 1 - 8
  • [4] Certified computation of the sign of a matrix determinant
    Pan, VY
    Yu, YQ
    PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1999, : 715 - 724
  • [5] THE COMPLEXITY OF COMPUTING THE SIGN OF THE TUTTE POLYNOMIAL
    Goldberg, Leslie Ann
    Jerrum, Mark
    SIAM JOURNAL ON COMPUTING, 2014, 43 (06) : 1921 - 1952
  • [6] Certification of Numerical Computation of the Sign of the Determinant of a Matrix
    V. Y. Pan
    Y. Yu
    Algorithmica, 2001, 30 : 708 - 724
  • [7] Certification of numerical computation of the sign of the determinant of a matrix
    Pan, VY
    Yu, Y
    ALGORITHMICA, 2001, 30 (04) : 708 - 724
  • [8] Computing the Integer Points of a Polyhedron, II: Complexity Estimates
    Jing, Rui-Juan
    Maza, Marc Moreno
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2017, 2017, 10490 : 242 - 256
  • [10] Computing the M = UUt integer matrix decomposition
    Geissler, K
    Smart, NP
    CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2003, 2898 : 223 - 233