Metal-Organic Framework for Transparent Electronics

被引:71
|
作者
Wu, Jie [1 ]
Chen, Jinhang [2 ,3 ]
Wang, Chao [1 ]
Zhou, Yi [1 ]
Ba, Kun [2 ,3 ]
Xu, Hu [4 ]
Bao, Wenzhong [4 ]
Xu, Xiaohui [1 ]
Carlsson, Anna [5 ]
Lazar, Sorin [5 ]
Meingast, Arno [5 ]
Sun, Zhengzong [2 ,3 ]
Deng, Hexiang [1 ]
机构
[1] Wuhan Univ, Key Lab Biomed Polymers, Minist Educ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[4] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[5] Thermo Fisher Sci, Mat & Struct Anal, NL-5651 GG Eindhoven, Netherlands
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
metal-organic frameworks; transparent electronics; GRAPHENE FILMS; THIN-FILMS; CRYSTALLINE; FABRICATION; MICROSCOPY; LIQUID; SENSOR; GLASS;
D O I
10.1002/advs.201903003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronics allowing for visible light to pass through are attractive, where a key challenge is to make the core functional units transparent. Here, it is shown that transparent electronics can be constructed by epitaxial growth of metal-organic frameworks (MOFs) on single-layer graphene (SLG) to give a desirable transparency of 95.7% to 550 nm visible light and an electrical conductivity of 4.0 x 10(4) S m(-1). Through lattice and symmetry match, collective alignment of MOF pores and dense packing of MOFs vertically on SLG are achieved, as directly visualized by electron microscopy. These MOF-on-SLG constructs are capable of room-temperature recognition of gas molecules at the ppb level with a linear range from 10 to 10(8) ppb, providing real-time gas monitoring function in transparent electronics. The corresponding devices can be fabricated on flexible substrates with large size, 3 x 5 cm, and afford continuous folding for more than 200 times without losing conductivity or transparency.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Metal-organic framework nanocomposite materials
    Huo, Fengwei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [42] Metal-organic framework absorbs microwaves
    Sealy, Cordelia
    MATERIALS TODAY, 2018, 21 (10) : 1001 - 1002
  • [43] Metal-organic framework materials as catalysts
    Lee, JeongYong
    Farha, Omar K.
    Roberts, John
    Scheidt, Karl A.
    Nguyen, SonBinh T.
    Hupp, Joseph T.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1450 - 1459
  • [44] Metal-Organic Framework Composites for Catalysis
    Chen, Liyu
    Xu, Qiang
    MATTER, 2019, 1 (01) : 57 - 89
  • [45] Metal-organic framework coated nanoparticles
    Tsung, Chia-Kuang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [46] A dynamic metal-organic framework photocatalyst
    Sun, Kang
    Jiang, Hai-Long
    NATURE CHEMISTRY, 2024, 16 (10) : 1580 - 1581
  • [47] Supramolecular mechanics in a metal-organic framework
    Ogborn, Joseph M.
    Collings, Ines E.
    Moggach, Stephen A.
    Thompson, Amber L.
    Goodwin, Andrew L.
    CHEMICAL SCIENCE, 2012, 3 (10) : 3011 - 3017
  • [48] Metal-organic framework heterojunctions for photocatalysis
    Dhakshinamoorthy, Amarajothi
    Li, Zhaohui
    Yang, Sihai
    Garcia, Hermenegildo
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (06) : 3002 - 3035
  • [49] Interpenetrated Metal-Organic Framework Glass
    Luo, Cheng
    Wei, Yong-Sheng
    Fan, Zeyu
    Berdichevsky, Ellan K.
    Nishiguchi, Taichi
    Shi, Haoyang
    Zhang, Siquan
    Nishiyama, Yusuke
    Yamada, Hiroki
    Horike, Satoshi
    CHEMISTRY OF MATERIALS, 2024, 36 (19) : 9775 - 9783
  • [50] Porosity in metal-organic framework glasses
    Thornton, A. W.
    Jelfs, K. E.
    Konstas, K.
    Doherty, C. M.
    Hill, A. J.
    Cheetham, A. K.
    Bennett, T. D.
    CHEMICAL COMMUNICATIONS, 2016, 52 (19) : 3750 - 3753