Metal-Organic Framework for Transparent Electronics

被引:71
|
作者
Wu, Jie [1 ]
Chen, Jinhang [2 ,3 ]
Wang, Chao [1 ]
Zhou, Yi [1 ]
Ba, Kun [2 ,3 ]
Xu, Hu [4 ]
Bao, Wenzhong [4 ]
Xu, Xiaohui [1 ]
Carlsson, Anna [5 ]
Lazar, Sorin [5 ]
Meingast, Arno [5 ]
Sun, Zhengzong [2 ,3 ]
Deng, Hexiang [1 ]
机构
[1] Wuhan Univ, Key Lab Biomed Polymers, Minist Educ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[4] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[5] Thermo Fisher Sci, Mat & Struct Anal, NL-5651 GG Eindhoven, Netherlands
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
metal-organic frameworks; transparent electronics; GRAPHENE FILMS; THIN-FILMS; CRYSTALLINE; FABRICATION; MICROSCOPY; LIQUID; SENSOR; GLASS;
D O I
10.1002/advs.201903003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronics allowing for visible light to pass through are attractive, where a key challenge is to make the core functional units transparent. Here, it is shown that transparent electronics can be constructed by epitaxial growth of metal-organic frameworks (MOFs) on single-layer graphene (SLG) to give a desirable transparency of 95.7% to 550 nm visible light and an electrical conductivity of 4.0 x 10(4) S m(-1). Through lattice and symmetry match, collective alignment of MOF pores and dense packing of MOFs vertically on SLG are achieved, as directly visualized by electron microscopy. These MOF-on-SLG constructs are capable of room-temperature recognition of gas molecules at the ppb level with a linear range from 10 to 10(8) ppb, providing real-time gas monitoring function in transparent electronics. The corresponding devices can be fabricated on flexible substrates with large size, 3 x 5 cm, and afford continuous folding for more than 200 times without losing conductivity or transparency.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Metal-organic framework compounds (MOFs)
    Kaskel, Stefan
    CHEMIE INGENIEUR TECHNIK, 2010, 82 (07) : 1019 - 1023
  • [32] Functional metal-organic framework materials
    Hupp, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [33] Polyoxometalate based metal-organic framework
    Duan, Chunying
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C1088 - C1088
  • [34] Electronic metal-organic framework sensors
    Chidambaram, Arunraj
    Stylianou, Kyriakos C.
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (05): : 979 - 998
  • [35] Dual Metal-Organic Framework Heterointerface
    Luo, Yue
    Li, Jun
    Liu, Xiangmei
    Tan, Lei
    Cui, Zhenduo
    Feng, Xiaobo
    Yang, Xianjin
    Liang, Yanqin
    Li, Zhaoyang
    Zhu, Shengli
    Zheng, Yufeng
    Yeung, Kelvin Wai Kwok
    Yang, Cao
    Wang, Xianbao
    Wu, Shuilin
    ACS CENTRAL SCIENCE, 2019, 5 (09) : 1591 - 1601
  • [36] Metal-organic framework gels and monoliths
    Hou, Jingwei
    Sapnik, Adam F.
    Bennett, Thomas D.
    CHEMICAL SCIENCE, 2020, 11 (02) : 310 - 323
  • [37] Negative compressibility of a metal-organic framework?
    Sobczak, Szymon
    Katrusiak, Andrzej
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E365 - E366
  • [38] Multiferroic homochiral metal-organic framework
    Ye, Qiong
    Fu, Da-Wei
    Tian, Hang
    Xiong, Ren-Gen
    Chan, Philip Wai Hong
    Huang, Songping D.
    INORGANIC CHEMISTRY, 2008, 47 (03) : 772 - 774
  • [39] Optical Switching in Metal-Organic Framework
    Kulachenkov, Nikita K.
    Yankin, Andrei N.
    Milichko, Valentin A.
    5TH INTERNATIONAL CONFERENCE ON METAMATERIALS AND NANOPHOTONICS (METANANO 2020), 2020, 2300
  • [40] Metal-Organic Framework Based Microcapsules
    He, Ting
    Xu, Xiaobin
    Ni, Bing
    Lin, Haifeng
    Li, Chaozhong
    Hu, Wenping
    Wang, Xun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (32) : 10148 - 10152