The canonical and alternate duals of a wavelet frame

被引:11
|
作者
Bownik, Marcin [1 ]
Lemvig, Jakob
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
关键词
D O I
10.1016/j.acha.2007.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there exists a frame wavelet psi with fast decay in the time domain and compact support in the frequency domain generating a wavelet system whose canonical dual frame cannot be generated by an arbitrary number of generators. On the other hand, there exists infinitely many alternate duals of psi generated by a single function. Our argument closes a gap in the original proof of this fact by Daubechies and Han [The canonical dual frame of a wavelet frame, Appl. Comput. Harmon. Anal. 12 (3) (2002) 269-2851. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:263 / 272
页数:10
相关论文
共 50 条
  • [31] Canonical and alternate functions of the microRNA biogenesis machinery
    Chong, Mark M. W.
    Zhang, Guoan
    Cheloufi, Sihem
    Neubert, Thomas A.
    Hannon, Gregory J.
    Littman, Dan R.
    [J]. GENES & DEVELOPMENT, 2010, 24 (17) : 1951 - 1960
  • [32] Sobolev Duals in Frame Theory and Sigma-Delta Quantization
    James Blum
    Mark Lammers
    Alexander M. Powell
    Özgür Yılmaz
    [J]. Journal of Fourier Analysis and Applications, 2010, 16 : 365 - 381
  • [33] TiRS graphs and TiRS frames: a new setting for duals of canonical extensions
    Andrew P. K. Craig
    Maria J. Gouveia
    Miroslav Haviar
    [J]. Algebra universalis, 2015, 74 : 123 - 138
  • [34] On semi-orthogonal wavelet bases of periodic splines and their duals
    Lin, W
    Liu, MS
    [J]. DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 1996, 176 : 503 - 520
  • [35] ON REDUNDANCY, DILATIONS AND CANONICAL DUALS OF g-FRAMES IN HILBERT SPACES
    Guo, Xunxiang
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04) : 81 - 99
  • [36] TiRS graphs and TiRS frames: a new setting for duals of canonical extensions
    Craig, Andrew P. K.
    Gouveia, Maria J.
    Haviar, Miroslav
    [J]. ALGEBRA UNIVERSALIS, 2015, 74 (1-2) : 123 - 138
  • [37] GENERALIZATION OF THE FRAME OPERATOR AND THE CANONICAL DUAL FRAME TO BANACH SPACES
    Stoeva, Diana T.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (04) : 631 - 643
  • [38] Deconvolution: a wavelet frame approach
    Chai, Anwei
    Shen, Zuowei
    [J]. NUMERISCHE MATHEMATIK, 2007, 106 (04) : 529 - 587
  • [39] Frame wavelet sets in R
    Dai, X
    Diao, Y
    Gu, Q
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (07) : 2045 - 2055
  • [40] Deconvolution: a wavelet frame approach
    Anwei Chai
    Zuowei Shen
    [J]. Numerische Mathematik, 2007, 106 : 529 - 587