GENERALIZATION OF THE FRAME OPERATOR AND THE CANONICAL DUAL FRAME TO BANACH SPACES

被引:4
|
作者
Stoeva, Diana T. [1 ]
机构
[1] Univ Architecture Civil Engn & Geodesy, Dept Math, Blvd Hristo Smirnenski 1, BU-1046 Sofia, Bulgaria
关键词
X-d-frame; frame operator; canonical dual;
D O I
10.1142/S1793557108000497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
X-d-frames for Banach spaces are generalization of Hilbert frames. In this paper we extend the concepts of frame operator and canonical dual to the case of X-d-frames. For a given X-d-frame {g(i)} for the Banach space X we define an X-d-frame map S : X -> X* and determine conditions, which imply that S is invertible and the family {S(-1)g(i)} is an X-d*-frame for X* such that f = Sigma g(i)(f)S(-1)g(i) for every f is an element of X and g = Sigma g(S(-1)g(i))g(i) for H every g is an element of X* If X is a Hilbert space and {g(i)} is a frame for X, then the l(2)-frame map S gives the frame operator S and the family {S(-1)g(i)} coincides with the canonical dual of {g(i)}.
引用
收藏
页码:631 / 643
页数:13
相关论文
共 50 条
  • [1] The canonical dual frame of a wavelet frame
    Daubechies, I
    Han, B
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (03) : 269 - 285
  • [2] On One Generalization of Banach Frame
    Ismailov, M. I.
    Nasibov, Y. I.
    [J]. AZERBAIJAN JOURNAL OF MATHEMATICS, 2016, 6 (02): : 143 - 159
  • [3] ON FRAME SYSTEMS IN BANACH SPACES
    Jain, P. K.
    Kaushik, S. K.
    Gupta, Nisha
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2009, 7 (01) : 1 - 7
  • [4] Frame expansions in separable Banach spaces
    Casazza, P
    Christensen, O
    Stoeva, DT
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (02) : 710 - 723
  • [5] On the frame of the unit ball of Banach spaces
    Tanaka, Ryotaro
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (11): : 1700 - 1713
  • [6] Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator
    Karlheinz Gröchenig
    [J]. Journal of Fourier Analysis and Applications, 2004, 10 : 105 - 132
  • [7] Loealization of frames, Banach frames, and the invertibility of the frame operator
    Gröchenig, K
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (02) : 105 - 132
  • [8] Frame potential for finite-dimensional Banach spaces
    Chavez-Dominguez, J. A.
    Freeman, D.
    Kornelson, K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 1 - 26
  • [9] Injective Dual Banach Spaces and Operator Ideals
    Raffaella Cilia
    Joaquín M. Gutiérrez
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [10] Injective Dual Banach Spaces and Operator Ideals
    Cilia, Raffaella
    Gutierrez, Joaquin M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)