Injective Dual Banach Spaces and Operator Ideals

被引:0
|
作者
Raffaella Cilia
Joaquín M. Gutiérrez
机构
[1] Università di Catania,Dipartimento di Matematica, Facoltà di Scienze
[2] Universidad Politécnica de Madrid,Departamento de Matemática Aplicada a la Ingeniería Industrial, Escuela Técnica Superior de Ingenieros Industriales
来源
关键词
-Injective spaces; Extension property; Operators with an integral representation; -spaces; -spaces; Factorization through ; or ; Primary 47B10; Secondary 46B03; 46B28;
D O I
暂无
中图分类号
学科分类号
摘要
We give characterizations of Banach spaces with λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-injective biduals in terms of operators with an integral representation. These results may be thought of as a certain refinement of Lindenstrauss’ extension theorems from his 1964 memoir. We also obtain dual results characterizing Banach spaces with λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-injective duals in terms of factorization of operators through L1(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1(\mu )$$\end{document} or ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Injective Dual Banach Spaces and Operator Ideals
    Cilia, Raffaella
    Gutierrez, Joaquin M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [3] DUAL L1-SPACES AND INJECTIVE BIDUAL BANACH-SPACES
    HAYDON, R
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1978, 31 (02) : 142 - 152
  • [4] ON IDEALS IN OPERATOR RINGS OVER BANACH SPACES - PRELIMINARY REPORT
    YOOD, B
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (03): : 281 - 281
  • [5] Approximation properties of tensor norms and operator ideals for Banach spaces
    Kim, Ju Myung
    [J]. OPEN MATHEMATICS, 2020, 18 : 1698 - 1708
  • [6] On separably injective Banach spaces
    Aviles, Antonio
    Cabello Sanchez, Felix
    Castillo, Jesus M. F.
    Gonzalez, Manuel
    Moreno, Yolanda
    [J]. ADVANCES IN MATHEMATICS, 2013, 234 : 192 - 216
  • [7] A Primer on Injective Banach Spaces
    Aviles, Antonio
    Cabello Sanchez, Felix
    Castillo, Jesus M. F.
    Gonzalez, Manuel
    Moreno, Yolanda
    [J]. SEPARABLY INJECTIVE BANACH SPACES, 2016, 2132 : 1 - 16
  • [8] Separably Injective Banach Spaces
    Aviles, Antonio
    Cabello Sanchez, Felix
    Castillo, Jesus M. F.
    Gonzalez, Manuel
    Moreno, Yolanda
    [J]. SEPARABLY INJECTIVE BANACH SPACES, 2016, 2132 : 17 - 65
  • [9] INJECTIVE ENVELOPES OF BANACH SPACES
    COHEN, HB
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1964, 70 (05): : 723 - &
  • [10] Characterizing derivations for any nest algebras on Banach spaces by their behaviors at an injective operator
    Zhang, Yanfang
    Hou, Jinchuan
    Qi, Xiaofei
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 : 312 - 333