Scalable Control Design for K-positive Linear Systems

被引:1
|
作者
Kawano, Yu [1 ]
Forni, Fulvio [2 ]
机构
[1] Hiroshima Univ, Grad Sch Engn, Kagamiyama 1-4-1, Higashihiroshima 7398527, Japan
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 09期
关键词
positivity; controller design; scalability; linear programming;
D O I
10.1016/j.ifacol.2021.06.065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Systems whose state is constrained to be positive allow for computationally efficient control design. These systems guarantee forward invariance of the positive orthant, which simplifies the design of stabilizing controllers. In this paper we show that this property can be extended to a wider class of systems. We study systems that guarantee forward invariance of a generic pointed, convex, solid cone and we provide (scalable) conditions for their stability and dissipativity based on linear programming. Our results are illustrated by scalable stabilizing controller design for mass-spring systems. Copyright (C) 2021 The Authors.
引用
收藏
页码:84 / 89
页数:6
相关论文
共 50 条
  • [21] Completely bounded norms of k-positive maps
    Aubrun, Guillaume
    Davidson, Kenneth R.
    Mueller-Hermes, Alexander
    Paulsen, Vern I.
    Rahaman, Mizanur
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (06):
  • [22] VARIATIONAL METHOD FOR STUDY OF NON-LINEAR OPERATORS WITH A K-POSITIVE DEFINITE DIFFERENTIAL
    DINCA, G
    ROSCA, I
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (01): : 25 - 28
  • [23] Degenerations of k-positive surface group representations
    Beyrer, Jonas
    Pozzetti, Beatrice
    JOURNAL OF TOPOLOGY, 2024, 17 (03)
  • [24] Approximation of a solution for a K-positive definite operator equation
    Chidume, CE
    Osilike, MO
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (01) : 1 - 7
  • [25] Characterization of k-Positive MapsCharacterization of k-Positive MapsT. Młynik, H. Osaka, M. Marciniak
    Tomasz Młynik
    Hiroyuki Osaka
    Marcin Marciniak
    Communications in Mathematical Physics, 2025, 406 (3)
  • [26] Approximation of a solution for a K-positive definite operator equation
    Int Cent for Theoretical Physics, Trieste, Italy
    J Math Anal Appl, 1 (1-7):
  • [27] K-POSITIVE TYPE DISTRIBUTIONS ON THE TANGENT-SPACE
    BOPP, N
    JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 44 (03) : 348 - 358
  • [28] Modified Gradient Method for K-positive Operator Models for Unmanned Aerial Vehicle Control
    Dakhno, Nataliia
    Barabash, Oleg
    Shevchenko, Halyna
    Leshchenko, Olga
    Musienko, Andriy
    2020 IEEE 6TH INTERNATIONAL CONFERENCE ON METHODS AND SYSTEMS OF NAVIGATION AND MOTION CONTROL (MSNMC), 2020, : 81 - 84
  • [29] A new criterion and a special class of k-positive maps
    Hou, Jinchuan
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Qi, Xiaofei
    Sze, Nung-Sing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 470 : 51 - 69
  • [30] Hadamard-type inequalities for k-positive matrices
    Le, Nam Q.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 635 : 159 - 170