Scalable Control Design for K-positive Linear Systems

被引:1
|
作者
Kawano, Yu [1 ]
Forni, Fulvio [2 ]
机构
[1] Hiroshima Univ, Grad Sch Engn, Kagamiyama 1-4-1, Higashihiroshima 7398527, Japan
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 09期
关键词
positivity; controller design; scalability; linear programming;
D O I
10.1016/j.ifacol.2021.06.065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Systems whose state is constrained to be positive allow for computationally efficient control design. These systems guarantee forward invariance of the positive orthant, which simplifies the design of stabilizing controllers. In this paper we show that this property can be extended to a wider class of systems. We study systems that guarantee forward invariance of a generic pointed, convex, solid cone and we provide (scalable) conditions for their stability and dissipativity based on linear programming. Our results are illustrated by scalable stabilizing controller design for mass-spring systems. Copyright (C) 2021 The Authors.
引用
收藏
页码:84 / 89
页数:6
相关论文
共 50 条
  • [1] Discrete-Time k-Positive Linear Systems
    Alseidi, Rola
    Margaliot, Michael
    Garloff, Juergen
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (01) : 399 - 405
  • [2] Balanced Truncation of k-Positive Systems
    Grussler, Christian
    Damm, Tobias
    Sepulchre, Rodolphe
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (01) : 526 - 531
  • [3] INTERNALLY HANKEL k-POSITIVE SYSTEMS
    Grussler, Christian
    Burghi, Thiago
    Sojoudi, Somayeh
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (04) : 2373 - 2392
  • [4] ON THE STRUCTURE OF LINEAR AND K-POSITIVE DEFINITE OPERATORS
    DINCA, G
    MATEESCU, D
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (06): : 677 - 687
  • [5] Ideal Convergence of k-Positive Linear Operators
    Gadjiev, Akif
    Duman, Oktay
    Ghorbanalizadeh, A. M.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [6] Diagonal Stability of Discrete-Time k-Positive Linear Systems With Applications to Nonlinear Systems
    Wu, Chengshuai
    Margaliot, Michael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4308 - 4313
  • [7] Statistical approximation theorems by k-positive linear operators
    Duman, O
    ARCHIV DER MATHEMATIK, 2006, 86 (06) : 569 - 576
  • [8] Statistical approximation theorems by k-positive linear operators
    Oktay Duman
    Archiv der Mathematik, 2006, 86 : 569 - 576
  • [9] Characterization of k-Positive Maps
    Mlynik, Tomasz
    Osaka, Hiroyuki
    Marciniak, Marcin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (03)
  • [10] Approximation of analytical functions by sequences of k-positive linear operators
    Gadjiev, A. D.
    Ghorbanalizadeh, A. M.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (06) : 1245 - 1255