Beyond Single-Shot Fault-Tolerant Quantum Error Correction

被引:10
|
作者
Delfosse, Nicolas [1 ]
Reichardt, Ben W. [2 ]
Svore, Krysta M. [1 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90007 USA
关键词
Quantum computing; error correction; CODES;
D O I
10.1109/TIT.2021.3120685
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extensive quantum error correction is necessary in order to perform a useful computation on a noisy quantum computer. Moreover, quantum error correction must be implemented based on imperfect parity check measurements that may return incorrect outcomes or inject additional faults into the qubits. To achieve fault-tolerant error correction, Shor proposed to repeat the sequence of parity check measurements until the same outcome is observed sufficiently many times. Then, one can use this information to perform error correction. A basic implementation of this fault tolerance strategy requires Omega(rd(2)) parity check measurements for a distance-d code defined by r parity checks. For some specific highly structured quantum codes, Bombin has shown that single-shot fault-tolerant quantum error correction is possible using only r measurements. In this work, we consider a phenomenological noise model for parity check measurements assuming that each bit of a codeword and the measurement outcome suffer from independent bit flips with some error rate p. For this model, we demonstrate that fault-tolerant quantum error correction can be achieved using O(d log(d)) measurements for any code with distance d >= Omega(n(alpha)) for some constant alpha > 0. Moreover, we prove the existence of a sub-single-shot fault-tolerant quantum error correction scheme using fewer than r measurements. In some cases, the number of parity check measurements required for fault-tolerant quantum error correction is exponentially smaller than the number of parity checks defining the code. The short measurement sequences constructed generally have high weight and our phenomenological noise model is not realistic in this regime. Our error correction strategy could find applications to small codes and LDPC codes if one can manage to keep the weight of the measured parity checks low.
引用
收藏
页码:287 / 301
页数:15
相关论文
共 50 条
  • [1] Single-Shot Fault-Tolerant Quantum Error Correction
    Bombin, Hector
    [J]. PHYSICAL REVIEW X, 2015, 5 (03):
  • [2] QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING
    Gaitan, Frank
    Li, Ran
    [J]. DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 : 53 - +
  • [3] An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation
    Gottesman, Daniel
    [J]. QUANTUM INFORMATION SCIENCE AND ITS CONTRIBUTIONS TO MATHEMATICS, 2010, 68 : 13 - 58
  • [4] FAULT-TOLERANT QUANTUM ERROR CORRECTION CODE CONVERSION
    Hill, Charles D.
    Fowler, Austin G.
    Wang, David S.
    Hollenberg, Lloyd C. L.
    [J]. QUANTUM INFORMATION & COMPUTATION, 2013, 13 (5-6) : 439 - 451
  • [5] Message passing in fault-tolerant quantum error correction
    Evans, Zachary W. E.
    Stephens, Ashley M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (06)
  • [6] Fault-tolerant quantum error correction code conversion
    [J]. Hill, C. D., 1600, Rinton Press Inc. (13): : 5 - 6
  • [7] Fault-tolerant error correction with efficient quantum codes
    DiVincenzo, DP
    Shor, PW
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (15) : 3260 - 3263
  • [8] Demonstration of Fault-Tolerant Steane Quantum Error Correction
    Postler, Lukas
    Butt, Friederike
    Pogorelov, Ivan
    Marciniak, Christian D.
    Heussen, Sascha
    Blatt, Rainer
    Schindler, Philipp
    Rispler, Manuel
    Mueller, Markus
    Monz, Thomas
    [J]. PRX QUANTUM, 2024, 5 (03):
  • [9] Fault-tolerant quantum error correction using error weight parities
    Tansuwannont, Theerapat
    Leung, Debbie
    [J]. PHYSICAL REVIEW A, 2021, 104 (04)
  • [10] Fault-tolerant thresholds for quantum error correction with the surface code
    Stephens, Ashley M.
    [J]. PHYSICAL REVIEW A, 2014, 89 (02):