An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation

被引:0
|
作者
Gottesman, Daniel [1 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
关键词
ACCURACY THRESHOLD; CODES; DECOHERENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantum states are very delicate, so it is likely some sort of quantum error correction will be necessary to build reliable quantum computers. The theory of quantum error-correcting codes has some close ties to and some striking differences from the theory of classical error-correcting codes. Many quantum codes can be described in terms of the stabilizer of the codewords. The stabilizer is a finite Abelian group, and allows a straightforward characterization of the error-correcting properties of the code. The stabilizer formalism for quantum codes also illustrates the relationships to classical coding theory, particularly classical codes over GF(4), the finite field with four elements. To build a quantum computer which behaves correctly in the presence of errors, we also need a theory of fault-tolerant quantum computation, instructing us how to perform quantum gates on qubits which are encoded in a quantum error-correcting code. The threshold theorem states that it is possible to create a quantum computer to perform an arbitrary quantum computation provided the error rate per physical gate or time step is below some constant threshold value.
引用
收藏
页码:13 / 58
页数:46
相关论文
共 50 条
  • [1] QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING
    Gaitan, Frank
    Li, Ran
    [J]. DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 : 53 - +
  • [2] Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat qubits
    Qian Xu
    Guo Zheng
    Yu-Xin Wang
    Peter Zoller
    Aashish A. Clerk
    Liang Jiang
    [J]. npj Quantum Information, 9
  • [3] Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat qubits
    Xu, Qian
    Zheng, Guo
    Wang, Yu-Xin
    Zoller, Peter
    Clerk, Aashish A. A.
    Jiang, Liang
    [J]. NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [4] High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction
    Fukui, Kosuke
    Tomita, Akihisa
    Okamoto, Atsushi
    Fujii, Keisuke
    [J]. PHYSICAL REVIEW X, 2018, 8 (02):
  • [5] Universal Fault-Tolerant Quantum Computation with Only Transversal Gates and Error Correction
    Paetznick, Adam
    Reichardt, Ben W.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [6] FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE
    Aharonov, Dorit
    Ben-Or, Michael
    [J]. SIAM JOURNAL ON COMPUTING, 2008, 38 (04) : 1207 - 1282
  • [7] Fault-tolerant quantum computation
    Shor, PW
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 56 - 65
  • [8] FAULT-TOLERANT QUANTUM ERROR CORRECTION CODE CONVERSION
    Hill, Charles D.
    Fowler, Austin G.
    Wang, David S.
    Hollenberg, Lloyd C. L.
    [J]. QUANTUM INFORMATION & COMPUTATION, 2013, 13 (5-6) : 439 - 451
  • [9] Message passing in fault-tolerant quantum error correction
    Evans, Zachary W. E.
    Stephens, Ashley M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (06)
  • [10] Fault-tolerant quantum error correction code conversion
    [J]. Hill, C. D., 1600, Rinton Press Inc. (13): : 5 - 6