Estimation of the Parameters of Generalized Inverse Weibull Geometric Distribution and its Application

被引:1
|
作者
Nasiri, Parviz [1 ]
Azarian, Amir Abbas [2 ]
机构
[1] Payame Noor Univ, Dept Stat, POB 19395-3697, Tehran, Iran
[2] Mashhad Univ Med Sci, Dept Stat, Mashhad, Razavi Khorasan, Iran
来源
FLUCTUATION AND NOISE LETTERS | 2021年 / 20卷 / 05期
关键词
Compound distributions; generalized inverse Weibull distribution; Mean square error; estimation; LIFETIME DISTRIBUTION; MIXTURE;
D O I
10.1142/S0219477521500437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inverse Weibull distribution is one of the distributions having a wide use for modeling system reliability and survival analysis. Recently, some of the researchers have compounded these distributions with some others to improve their models. In this paper, we present the compounded generalized inverse Weibull with geometric distribution. To estimate the parameters, we discuss the maximum likelihood using EM algorithm and Bayesian estimation for compound parameter of distribution. Efficacy of estimators using EM algorithm and minimum distance method is compared using mean square error. Finally, this distribution is fitted to a real dataset.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] New generalized inverse Weibull distribution for lifetime modeling
    Khan, Muhammad Shuaib
    King, Robert
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2016, 23 (02) : 147 - 161
  • [32] Bayesian Credible Intervals for Generalized Inverse Weibull Distribution
    Kaur, Kamaljit
    Arora, Sangeeta
    Mahajan, Kalpana K.
    STATISTICS AND APPLICATIONS, 2022, 20 (02): : 177 - 188
  • [33] Estimation of the Inverse Weibull Distribution Parameters under Type-I Hybrid Censoring
    Kazemi, Mohammad
    Azizpoor, Mina
    AUSTRIAN JOURNAL OF STATISTICS, 2021, 50 (05) : 38 - 51
  • [34] Estimation of parameters of the generalized geometric distribution using ranked set sampling
    Bhoj, DS
    Ahsanullah, M
    BIOMETRICS, 1996, 52 (02) : 685 - 694
  • [35] OPTIMUM ESTIMATION OF THE PARAMETER OF THE GENERALIZED WEIBULL DISTRIBUTION
    TARTAKOWSKY, AG
    RADIOTEKHNIKA I ELEKTRONIKA, 1988, 33 (05): : 986 - 991
  • [36] Optimum estimation of the parameter of the generalized Weibull distribution
    Tartakovskiy, A.G.
    Soviet journal of communications technology & electronics, 1988, 33 (10): : 84 - 89
  • [37] The Weibull Generalized Exponential Distribution with Censored Sample: Estimation and Application on Real Data
    Almongy, Hisham M.
    Almetwally, Ehab M.
    Alharbi, Randa
    Alnagar, Dalia
    Hafez, E. H.
    El-Din, Marwa M. Mohie
    COMPLEXITY, 2021, 2021
  • [38] Discrete Weibull geometric distribution and its properties
    Jayakumar, K.
    Babu, M. Girish
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (07) : 1767 - 1783
  • [39] THE GEOMETRIC STRUCTURES OF THE WEIBULL DISTRIBUTION MANIFOLD AND THE GENERALIZED EXPONENTIAL DISTRIBUTION MANIFOLD
    Cao, Limei
    Sun, Huafei
    Wang, Xiaojie
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (01): : 45 - 51
  • [40] A New Generalization of the Inverse Generalized Weibull Distribution with Different Methods of Estimation and Applications in Medicine and Engineering
    Alsaggaf, Ibtesam A.
    Aloufi, Sara F.
    Baharith, Lamya A.
    SYMMETRY-BASEL, 2024, 16 (08):