Discrete Weibull geometric distribution and its properties

被引:20
|
作者
Jayakumar, K. [1 ]
Babu, M. Girish [2 ]
机构
[1] Univ Calicut, Dept Stat, Calicut, Kerala, India
[2] Govt Arts & Sci Coll, Dept Stat, Kozhikode 673018, Kerala, India
关键词
Discrete Weibull distribution; Geometric distribution; Hazard rate function; Order statistics; Weibull distribution; Weibull geometric distribution; 62E15; 62E99; ANALOG;
D O I
10.1080/03610926.2017.1327074
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, the discrete analog of Weibull geometric distribution is introduced. Discrete Weibull, discrete Rayleigh, and geometric distributions are submodels of this distribution. Some basic distributional properties, hazard function, random number generation, moments, and order statistics of this new discrete distribution are studied. Estimation of the parameters are done using maximum likelihood method. The applications of the distribution is established using two datasets.
引用
下载
收藏
页码:1767 / 1783
页数:17
相关论文
共 50 条
  • [1] Discrete Additive Weibull Geometric Distribution
    Jayakumar, K.
    Babu, M. Girish
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2019, 18 (01): : 33 - 45
  • [2] Discrete Additive Weibull Geometric Distribution
    K. Jayakumar
    M. Girish Babu
    Journal of Statistical Theory and Applications, 2019, 18 : 33 - 45
  • [3] The Exponentiated Weibull-Geometric Distribution: Properties and Estimations
    Chung, Younshik
    Kanga, Yongbeen
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2014, 21 (02) : 147 - 160
  • [4] DISCRETE WEIBULL DISTRIBUTION
    NAKAGAWA, T
    OSAKI, S
    IEEE TRANSACTIONS ON RELIABILITY, 1975, 24 (05) : 300 - 301
  • [5] Discrete additive Perks–Weibull distribution: properties and applications
    Abhishek Tyagi
    Neha Choudhary
    Bhupendra Singh
    Life Cycle Reliability and Safety Engineering, 2019, 8 (3) : 183 - 199
  • [6] The Weibull-geometric distribution
    Souza, Wagner Barreto
    de Morais, Alice Lemos
    Cordeiro, Gauss M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (05) : 645 - 657
  • [7] The modified Weibull geometric distribution
    Wang M.
    Elbatal I.
    METRON, 2015, 73 (3) : 303 - 315
  • [8] The complementary Weibull geometric distribution
    Tojeiro, Cynthia
    Louzada, Francisco
    Roman, Mari
    Borges, Patrick
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (06) : 1345 - 1362
  • [9] On DUS Transformed Weibull Distribution and its Properties
    Chaudhry, Kalsoom Akhtar
    Shareef, Javaria
    STATISTICS AND APPLICATIONS, 2021, 19 (02): : 1 - 12
  • [10] Discrete Linnik Weibull distribution
    Jayakumar, K.
    Sankaran, K. K.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (10) : 3092 - 3117