On Riemann and Caputo fractional differences

被引:481
|
作者
Abdeljawad, Thabet [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
Left fractional sum; Right fractional sum; Caputo left and right fractional differences; Left and right Riemann differences; Discrete Mittag-Leffler function; EQUATIONS; DERIVATIVES; CALCULUS;
D O I
10.1016/j.camwa.2011.03.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define left and right Caputo fractional sums and differences, study some of their properties and then relate them to Riemann-Liouville ones studied before by Miller K. S. and Ross B., Atici F.M. and Eloe P. W., Abdeljawad T. and Baleanu D., and a few others. Also, the discrete version of the Q-operator is used to relate the left and right Caputo fractional differences. A Caputo fractional difference equation is solved. The solution proposes discrete versions of Mittag-Leffler functions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1602 / 1611
页数:10
相关论文
共 50 条
  • [31] Objectivity Lost when Riemann-Liouville or Caputo Fractional Order Derivatives Are Used
    Balint, Agneta M.
    Balint, Stefan
    TIM18 PHYSICS CONFERENCE, 2019, 2071
  • [32] RIEMANN-STIELTJES INTEGRAL BOUNDARY VALUE PROBLEMS INVOLVING MIXED RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Ahmad, Bashir
    Alruwaily, Ymnah
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [33] Riemann-stieltjes integral boundary value problems involving mixed riemann-liouville and caputo fractional derivatives
    Ahmad B.
    Alruwaily Y.
    Alsaedi A.
    Ntouyas S.K.
    Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [34] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Aziz Khan
    Muhammed I. Syam
    Akbar Zada
    Hasib Khan
    The European Physical Journal Plus, 133
  • [35] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Khan, Aziz
    Syam, Muhammed I.
    Zada, Akbar
    Khan, Hasib
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (07):
  • [36] New Fractional Integral Inequalities Pertaining to Caputo-Fabrizio and Generalized Riemann-Liouville Fractional Integral Operators
    Tariq, Muhammad
    Alsalami, Omar Mutab
    Shaikh, Asif Ali
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    AXIOMS, 2022, 11 (11)
  • [37] NONLOCAL FRACTIONAL SUM BOUNDARY VALUE PROBLEMS FOR MIXED TYPES OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENCE EQUATIONS
    Soontharanon, J.
    Jasthitikulchai, N.
    Sitthiwirattham, T.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2016, 25 (03): : 409 - 429
  • [38] Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems
    Borisut, Piyachat
    Kumam, Poom
    Ahmed, Idris
    Sitthithakerngkiet, Kanokwan
    SYMMETRY-BASEL, 2019, 11 (06):
  • [39] Fractional order differential systems involving right Caputo and left Riemann–Liouville fractional derivatives with nonlocal coupled conditions
    Bashir Ahmad
    Sotiris K. Ntouyas
    Ahmed Alsaedi
    Boundary Value Problems, 2019
  • [40] A Comparative Analysis of Conformable, Non-conformable, Riemann-Liouville, and Caputo Fractional Derivatives
    Brahim, A. Ait
    El Ghordaf, J.
    El Hajaji, A.
    Hilal, K.
    Valdes, J. E. Napoles
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1842 - 1854