On Riemann and Caputo fractional differences

被引:481
|
作者
Abdeljawad, Thabet [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
Left fractional sum; Right fractional sum; Caputo left and right fractional differences; Left and right Riemann differences; Discrete Mittag-Leffler function; EQUATIONS; DERIVATIVES; CALCULUS;
D O I
10.1016/j.camwa.2011.03.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define left and right Caputo fractional sums and differences, study some of their properties and then relate them to Riemann-Liouville ones studied before by Miller K. S. and Ross B., Atici F.M. and Eloe P. W., Abdeljawad T. and Baleanu D., and a few others. Also, the discrete version of the Q-operator is used to relate the left and right Caputo fractional differences. A Caputo fractional difference equation is solved. The solution proposes discrete versions of Mittag-Leffler functions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1602 / 1611
页数:10
相关论文
共 50 条
  • [1] On Riemann and Caputo fractional differences
    Abdeljawad, Thabet
    Computers and Mathematics with Applications, 2011, 62 (03): : 1602 - 1611
  • [2] Monotonicity Results for Delta and Nabla Caputo and Riemann Fractional Differences via Dual Identities
    Abdeljawad, Thabet
    Abdalla, Bahaaeldin
    FILOMAT, 2017, 31 (12) : 3671 - 3683
  • [3] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [4] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [5] RIEMANN LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL AND INTEGRAL INEQUALITIES
    Stutson, Donna S.
    Vatsala, Aghalaya S.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (04): : 723 - 733
  • [6] Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Elattar, Ehab E.
    Hamed, Y. S.
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3058 - 3070
  • [7] Fractional differential repetitive processes with Riemann–Liouville and Caputo derivatives
    Dariusz Idczak
    Rafał Kamocki
    Multidimensional Systems and Signal Processing, 2015, 26 : 193 - 206
  • [8] Riemann–Liouville and Caputo Fractional Potentials Associated with the Number Operator
    Ziyad A. Alhussain
    Habib Rebei
    Hafedh Rguigui
    Anis Riahi
    Complex Analysis and Operator Theory, 2022, 16
  • [9] Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results
    Guirao, Juan L. G.
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Abualrub, Marwan S.
    AIMS MATHEMATICS, 2022, 7 (10): : 18127 - 18141
  • [10] Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives
    Idczak, Dariusz
    Kamocki, Rafal
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) : 193 - 206