AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers

被引:4
|
作者
Nagendra, Nayana Prasad [1 ]
Ayers, Grant [2 ]
August, David I. [3 ]
Cho, Hyoun Kyu [2 ]
Kanev, Svilen [4 ]
Kozyrakis, Christos [5 ]
Krishnamurthy, Trivikram [6 ]
Litz, Heiner [7 ]
Moseley, Tipp [8 ]
Ranganathan, Parthasarathy [9 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Google, Mountain View, CA USA
[3] Princeton Univ, Dept Comp Sci, Liberty Res Grp, Princeton, NJ 08544 USA
[4] Google, Translating Datactr Performance Anal Insights Per, Mountain View, CA USA
[5] Stanford Univ, Elect Engn & Comp Sci, Stanford, CA 94305 USA
[6] Nvidia, Santa Clara, CA USA
[7] Univ Calif Santa Cruz, Comp Sci & Engn Dept, Santa Cruz, CA 95064 USA
[8] Google, Datactr Scale Performance Anal, Mountain View, CA USA
[9] Google, Nextgenerat Syst, Mountain View, CA USA
关键词
Prefetching; Optimization; Servers; Hardware; Databases; Complexity theory;
D O I
10.1109/MM.2020.2986212
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
It is well known that the datacenters hosting today's cloud services waste a significant number of cycles on front-end stalls. However, prior work has provided little insights about the source of these front-end stalls and how to address them. This work analyzes the cause of instruction cache misses at a fleet-wide scale and proposes a new compiler-driven software code prefetching strategy to reduce instruction caches misses by 90%.
引用
下载
收藏
页码:56 / 63
页数:8
相关论文
共 41 条