共 41 条
AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers
被引:4
|作者:
Nagendra, Nayana Prasad
[1
]
Ayers, Grant
[2
]
August, David I.
[3
]
Cho, Hyoun Kyu
[2
]
Kanev, Svilen
[4
]
Kozyrakis, Christos
[5
]
Krishnamurthy, Trivikram
[6
]
Litz, Heiner
[7
]
Moseley, Tipp
[8
]
Ranganathan, Parthasarathy
[9
]
机构:
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Google, Mountain View, CA USA
[3] Princeton Univ, Dept Comp Sci, Liberty Res Grp, Princeton, NJ 08544 USA
[4] Google, Translating Datactr Performance Anal Insights Per, Mountain View, CA USA
[5] Stanford Univ, Elect Engn & Comp Sci, Stanford, CA 94305 USA
[6] Nvidia, Santa Clara, CA USA
[7] Univ Calif Santa Cruz, Comp Sci & Engn Dept, Santa Cruz, CA 95064 USA
[8] Google, Datactr Scale Performance Anal, Mountain View, CA USA
[9] Google, Nextgenerat Syst, Mountain View, CA USA
来源:
关键词:
Prefetching;
Optimization;
Servers;
Hardware;
Databases;
Complexity theory;
D O I:
10.1109/MM.2020.2986212
中图分类号:
TP3 [计算技术、计算机技术];
学科分类号:
0812 ;
摘要:
It is well known that the datacenters hosting today's cloud services waste a significant number of cycles on front-end stalls. However, prior work has provided little insights about the source of these front-end stalls and how to address them. This work analyzes the cause of instruction cache misses at a fleet-wide scale and proposes a new compiler-driven software code prefetching strategy to reduce instruction caches misses by 90%.
引用
下载
收藏
页码:56 / 63
页数:8
相关论文