AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers

被引:4
|
作者
Nagendra, Nayana Prasad [1 ]
Ayers, Grant [2 ]
August, David I. [3 ]
Cho, Hyoun Kyu [2 ]
Kanev, Svilen [4 ]
Kozyrakis, Christos [5 ]
Krishnamurthy, Trivikram [6 ]
Litz, Heiner [7 ]
Moseley, Tipp [8 ]
Ranganathan, Parthasarathy [9 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Google, Mountain View, CA USA
[3] Princeton Univ, Dept Comp Sci, Liberty Res Grp, Princeton, NJ 08544 USA
[4] Google, Translating Datactr Performance Anal Insights Per, Mountain View, CA USA
[5] Stanford Univ, Elect Engn & Comp Sci, Stanford, CA 94305 USA
[6] Nvidia, Santa Clara, CA USA
[7] Univ Calif Santa Cruz, Comp Sci & Engn Dept, Santa Cruz, CA 95064 USA
[8] Google, Datactr Scale Performance Anal, Mountain View, CA USA
[9] Google, Nextgenerat Syst, Mountain View, CA USA
关键词
Prefetching; Optimization; Servers; Hardware; Databases; Complexity theory;
D O I
10.1109/MM.2020.2986212
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
It is well known that the datacenters hosting today's cloud services waste a significant number of cycles on front-end stalls. However, prior work has provided little insights about the source of these front-end stalls and how to address them. This work analyzes the cause of instruction cache misses at a fleet-wide scale and proposes a new compiler-driven software code prefetching strategy to reduce instruction caches misses by 90%.
引用
下载
收藏
页码:56 / 63
页数:8
相关论文
共 41 条
  • [11] WSMeter: A Performance Evaluation Methodology for Google's Production Warehouse-Scale Computers
    Lee, Jaewon
    Kim, Changkyu
    Lin, Kun
    Cheng, Liqun
    Govindaraju, Rama
    Kim, Jangwoo
    ACM SIGPLAN NOTICES, 2018, 53 (02) : 549 - 563
  • [12] Reining in Long Tails in Warehouse-Scale Computers with Quick Voltage Boosting Using Adrenaline
    Hsu, Chang-Hong
    Zhang, Yunqi
    Laurenzano, Michael A.
    Meisner, David
    Wenisch, Thomas
    Dreslinski, Ronald G.
    Mars, Jason
    Tang, Lingjia
    ACM TRANSACTIONS ON COMPUTER SYSTEMS, 2017, 35 (01):
  • [13] Front-End And Back-End Separation For Warehouse Management System
    Qi Yunrui
    2018 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2018), 2018, : 204 - 208
  • [14] Using Data Variety for Efficient Progressive Big Data Processing in Warehouse-Scale Computers
    Ahmadvand, Hossein
    Goudarzi, Maziar
    IEEE COMPUTER ARCHITECTURE LETTERS, 2017, 16 (02) : 166 - 169
  • [15] A MULTI-FUNCTION FASTBUS FRONT-END FOR VAXBI COMPUTERS
    JOST, B
    MERTENS, V
    MARCHIORO, A
    MIOTTO, A
    VONRUDEN, W
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1989, 36 (05) : 1452 - 1455
  • [16] Thermal Time Shifting: Leveraging Phase Change Materials to Reduce Cooling Costs in Warehouse-Scale Computers
    Skach, Matt
    Arora, Manish
    Hsu, Chang-Hong
    Li, Qi
    Tullsen, Dean
    Tang, Lingjia
    Mars, Jason
    2015 ACM/IEEE 42ND ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2015, : 439 - 449
  • [17] Octopus-Man: QoS-Driven Task Management for Heterogeneous Multicores in Warehouse-Scale Computers
    Petrucci, Vinicius
    Laurenzano, Michael A.
    Doherty, John
    Zhang, Yunqi
    Mosse, Daniel
    Mars, Jason
    Tang, Lingjia
    2015 IEEE 21ST INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2015, : 246 - 258
  • [18] Prophet: Precise QoS Prediction on Non-Preemptive Accelerators to Improve Utilization in Warehouse-Scale Computers
    Chen, Quan
    Yang, Hailong
    Guo, Minyi
    Kannan, Ram Srivatsa
    Mars, Jason
    Tang, Lingjia
    OPERATING SYSTEMS REVIEW, 2017, 51 (02) : 17 - 32
  • [19] Prophet: Precise QoS Prediction on Non-Preemptive Accelerators to Improve Utilization in Warehouse-Scale Computers
    Chen, Quan
    Yang, Hailong
    Guo, Minyi
    Kannan, Ram Srivatsa
    Mars, Jason
    Tang, Lingjia
    ACM SIGPLAN NOTICES, 2017, 52 (04) : 17 - 32
  • [20] Prophet: Precise QoS Prediction on Non-Preemptive Accelerators to Improve Utilization in Warehouse-Scale Computers
    Chen, Quan
    Yang, Hailong
    Guo, Minyi
    Kannan, Ram Srivatsa
    Mars, Jason
    Tang, Lingjia
    TWENTY-SECOND INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXII), 2017, : 17 - 32