A lower bound on the edge l∞ radius of Saitou and Nei's method for phylogenetic reconstruction

被引:2
|
作者
Xu, YF [1 ]
Dai, WQ
Zhu, BH
机构
[1] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
[2] Xian Jiaotong Univ, Sch Management, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
phylogenetic reconstruction; neighbor-joining; evolutionary trees; analysis of algorithms;
D O I
10.1016/j.ipl.2005.02.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the performance of Saitou and Nei's neighbor-joining method for phylogenetic reconstruction. We show that the edge l(infinity) radius of the method is at least 1/6. This partially answers a question by Atteson (1999). Previously, only an upper bound of 1/4 was known. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 18 条
  • [1] On the edge l∞ radius of Saitou and Nei's method for phylogenetic reconstruction
    Dai, Wenqiang
    Xu, Yinfeng
    Zhu, Binhai
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 369 (1-3) : 448 - 455
  • [2] Lower bound of real primitive L-function at s=1
    Ji, CG
    Lu, HW
    [J]. ACTA ARITHMETICA, 2004, 111 (04) : 405 - 409
  • [3] On a lower bound for the L-S category of a rationally elliptic space
    Yamaguchi, T
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2005, 12 (04) : 565 - 568
  • [4] An explicit lower bound on moduli of Dirichlet L-functions at s=1
    Louboutin, Stephane R.
    [J]. JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2015, 30 (01) : 101 - 113
  • [5] Nondeterminism and An Abstract Formulation of Ne. ciporuk's Lower Bound Method
    Beame, Paul
    Grosshans, Nathan
    Mckenzie, Pierre
    Segoufin, Luc
    [J]. ACM TRANSACTIONS ON COMPUTATION THEORY, 2016, 9 (01)
  • [6] A New Lower Bound Based on Gromov's Method of Selecting Heavily Covered Points
    Kral', Daniel
    Mach, Lukas
    Sereni, Jean-Sebastien
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (02) : 487 - 498
  • [7] A New Lower Bound Based on Gromov’s Method of Selecting Heavily Covered Points
    Daniel Král’
    Lukáš Mach
    Jean-Sébastien Sereni
    [J]. Discrete & Computational Geometry, 2012, 48 : 487 - 498
  • [8] The lattice point discrepancy of a body of revolution:: Improving the lower bound by Soundararajan's method
    Kühleitner, M
    Nowak, WG
    [J]. ARCHIV DER MATHEMATIK, 2004, 83 (03) : 208 - 216
  • [9] The lattice point discrepancy of a body of revolution: Improving the lower bound by Soundararajan’s method
    Manfred Kühleitner
    Werner Georg Nowak
    [J]. Archiv der Mathematik, 2004, 83 : 208 - 216
  • [10] The Piltz divisor problem in number fields:: An improved lower bound by Soundararajan's method
    Girstmair, K
    Kühleitner, M
    Müller, W
    Nowak, WG
    [J]. ACTA ARITHMETICA, 2005, 117 (02) : 187 - 206