A New Lower Bound Based on Gromov's Method of Selecting Heavily Covered Points

被引:29
|
作者
Kral', Daniel [1 ]
Mach, Lukas [1 ]
Sereni, Jean-Sebastien [2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Comp Sci, Prague 11800 1, Czech Republic
[2] Univ Paris 07, CNRS, LIAFA, Paris, France
[3] Charles Univ Prague, Fac Math & Phys, Dept Appl Math KAM, Prague 11800 1, Czech Republic
基金
欧洲研究理事会;
关键词
Flag algebras; Covering points by simplicies; Cofilling profiles; Boros-Furedi-Barany-Pach-Gromov theorem;
D O I
10.1007/s00454-012-9419-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Boros and Furedi (for d=2) and Barany (for arbitrary d) proved that there exists a positive real number c (d) such that for every set P of n points in R (d) in general position, there exists a point of R (d) contained in at least d-simplices with vertices at the points of P. Gromov improved the known lower bound on c (d) by topological means. Using methods from extremal combinatorics, we improve one of the quantities appearing in Gromov's approach and thereby provide a new stronger lower bound on c (d) for arbitrary d. In particular, we improve the lower bound on c (3) from 0.06332 to more than 0.07480; the best upper bound known on c (3) being 0.09375.
引用
收藏
页码:487 / 498
页数:12
相关论文
共 50 条
  • [1] A New Lower Bound Based on Gromov’s Method of Selecting Heavily Covered Points
    Daniel Král’
    Lukáš Mach
    Jean-Sébastien Sereni
    [J]. Discrete & Computational Geometry, 2012, 48 : 487 - 498
  • [2] On Gromov’s Method of Selecting Heavily Covered Points
    Jiří Matoušek
    Uli Wagner
    [J]. Discrete & Computational Geometry, 2014, 52 : 1 - 33
  • [3] On Gromov's Method of Selecting Heavily Covered Points
    Matousek, Jiri
    Wagner, Uli
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (01) : 1 - 33
  • [4] SELECTING HEAVILY COVERED POINTS
    CHAZELLE, B
    EDELSBRUNNER, H
    GUIBAS, LJ
    HERSHBERGER, JE
    SEIDEL, R
    SHARIR, M
    [J]. SIAM JOURNAL ON COMPUTING, 1994, 23 (06) : 1138 - 1151
  • [5] Selecting points that are heavily covered by pseudo-circles, spheres or rectangles
    Smorodinsky, S
    Sharir, M
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (03): : 389 - 411
  • [6] A lower bound for the height of a rational function at S-unit points
    Corvaja, P
    Zannier, U
    [J]. MONATSHEFTE FUR MATHEMATIK, 2005, 144 (03): : 203 - 224
  • [7] A Lower Bound for the Height of a Rational Function at S-unit Points
    Pietro Corvaja
    Umberto Zannier
    [J]. Monatshefte für Mathematik, 2005, 144 : 203 - 224
  • [8] An image registration method based on region selecting and feature points matching
    Liu, Gui-Xi
    Wang, Lei
    [J]. Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2007, 18 (08): : 999 - 1002
  • [9] A new estimation of the lower error bound in balanced truncation method
    Ha Binh Minh
    Batlle, Carles
    Fossas, Enric
    [J]. AUTOMATICA, 2014, 50 (08) : 2196 - 2198
  • [10] A NEW CONSTITUTIVELY ACCURATE LOWER BOUND DIRECT SHAKEDOWN METHOD
    Jappy, Alan
    Mackenzie, Donald
    Chen, Haofeng
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2013, VOL 3: DESIGN AND ANALYSIS, 2014,