A New Lower Bound Based on Gromov’s Method of Selecting Heavily Covered Points

被引:0
|
作者
Daniel Král’
Lukáš Mach
Jean-Sébastien Sereni
机构
[1] Charles University,Computer Science Institute, Faculty of Mathematics and Physics
[2] CNRS (LIAFA,Department of Applied Mathematics (KAM), Faculty of Mathematics and Physics
[3] Université Denis Diderot),undefined
[4] Charles University,undefined
来源
关键词
Flag algebras; Covering points by simplicies; Cofilling profiles; Boros–Füredi–Bárány–Pach–Gromov theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Boros and Füredi (for d=2) and Bárány (for arbitrary d) proved that there exists a positive real number cd such that for every set P of n points in Rd in general position, there exists a point of Rd contained in at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{d}\binom{n}{d+1}$\end{document}d-simplices with vertices at the points of P. Gromov improved the known lower bound on cd by topological means. Using methods from extremal combinatorics, we improve one of the quantities appearing in Gromov’s approach and thereby provide a new stronger lower bound on cd for arbitrary d. In particular, we improve the lower bound on c3 from 0.06332 to more than 0.07480; the best upper bound known on c3 being 0.09375.
引用
收藏
页码:487 / 498
页数:11
相关论文
共 50 条
  • [1] A New Lower Bound Based on Gromov's Method of Selecting Heavily Covered Points
    Kral', Daniel
    Mach, Lukas
    Sereni, Jean-Sebastien
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (02) : 487 - 498
  • [2] On Gromov’s Method of Selecting Heavily Covered Points
    Jiří Matoušek
    Uli Wagner
    [J]. Discrete & Computational Geometry, 2014, 52 : 1 - 33
  • [3] On Gromov's Method of Selecting Heavily Covered Points
    Matousek, Jiri
    Wagner, Uli
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (01) : 1 - 33
  • [4] SELECTING HEAVILY COVERED POINTS
    CHAZELLE, B
    EDELSBRUNNER, H
    GUIBAS, LJ
    HERSHBERGER, JE
    SEIDEL, R
    SHARIR, M
    [J]. SIAM JOURNAL ON COMPUTING, 1994, 23 (06) : 1138 - 1151
  • [5] Selecting points that are heavily covered by pseudo-circles, spheres or rectangles
    Smorodinsky, S
    Sharir, M
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (03): : 389 - 411
  • [6] A lower bound for the height of a rational function at S-unit points
    Corvaja, P
    Zannier, U
    [J]. MONATSHEFTE FUR MATHEMATIK, 2005, 144 (03): : 203 - 224
  • [7] A Lower Bound for the Height of a Rational Function at S-unit Points
    Pietro Corvaja
    Umberto Zannier
    [J]. Monatshefte für Mathematik, 2005, 144 : 203 - 224
  • [8] An image registration method based on region selecting and feature points matching
    Liu, Gui-Xi
    Wang, Lei
    [J]. Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2007, 18 (08): : 999 - 1002
  • [9] A new estimation of the lower error bound in balanced truncation method
    Ha Binh Minh
    Batlle, Carles
    Fossas, Enric
    [J]. AUTOMATICA, 2014, 50 (08) : 2196 - 2198
  • [10] A NEW CONSTITUTIVELY ACCURATE LOWER BOUND DIRECT SHAKEDOWN METHOD
    Jappy, Alan
    Mackenzie, Donald
    Chen, Haofeng
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2013, VOL 3: DESIGN AND ANALYSIS, 2014,