Real-Time Implementation of the Sparse Multinomial Logistic Regression for Hyperspectral Image Classification on GPUs

被引:30
|
作者
Wu, Zebin [1 ,2 ]
Wang, Qicong [1 ]
Plaza, Antonio [2 ]
Li, Jun [3 ]
Sun, Le [1 ]
Wei, Zhihui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Graphics processing units (GPUs); hyperspectral image classification; parallel;
D O I
10.1109/LGRS.2015.2408433
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, a real-time implementation of the logistic regression via variable splitting and augmented Lagrangian (LORSAL) algorithm for sparse multinomial logistic regression is presented on commodity graphics processing units (GPUs) using Nvidia's compute unified device architecture. The proposed parallel method properly exploits the GPU architecture at the low level, including its shared memory, and takes full advantage of the computational power of GPUs to achieve real-time classification performance of hyperspectral images for the first time in the hyperspectral imaging literature. Our experimental results reveal remarkable acceleration factors and real-time performance, while retaining exactly the same classification accuracy with regard to the serial and multicore versions of the classifier.
引用
收藏
页码:1456 / 1460
页数:5
相关论文
共 50 条
  • [1] Semisupervised Hyperspectral Image Classification Using Soft Sparse Multinomial Logistic Regression
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 318 - 322
  • [2] Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification
    Cao, Faxian
    Yang, Zhijing
    Ren, Jinchang
    Ling, Wing-Kuen
    Zhao, Huimin
    Marshall, Stephen
    [J]. REMOTE SENSING, 2017, 9 (12)
  • [3] Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs
    Sanchez, Sergio
    Ramalho, Rui
    Sousa, Leonel
    Plaza, Antonio
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2015, 10 (03) : 469 - 483
  • [4] Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs
    Sergio Sánchez
    Rui Ramalho
    Leonel Sousa
    Antonio Plaza
    [J]. Journal of Real-Time Image Processing, 2015, 10 : 469 - 483
  • [5] A Subspace-Based Multinomial Logistic Regression for Hyperspectral Image Classification
    Khodadadzadeh, Mahdi
    Li, Jun
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (12) : 2105 - 2109
  • [6] Spatial Preprocessing Based Multinomial Logistic Regression For Hyperspectral Image Classification
    Prabhakar, Nidhin T., V
    Xavier, Gintu
    Geetha, P.
    Soman, K. P.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 : 1817 - 1826
  • [7] Approximate Sparse Multinomial Logistic Regression for Classification
    Kayabol, Koray
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) : 490 - 493
  • [8] Multiclass Classification by Sparse Multinomial Logistic Regression
    Abramovich, Felix
    Grinshtein, Vadim
    Levy, Tomer
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (07) : 4637 - 4646
  • [9] SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A MARKOV RANDOM FIELD AND SPARSE MULTINOMIAL LOGISTIC REGRESSION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2119 - +
  • [10] Kronecker Factorization-Based Multinomial Logistic Regression for Hyperspectral Image Classification
    Wang, Xiaotao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19