Spatial Preprocessing Based Multinomial Logistic Regression For Hyperspectral Image Classification

被引:14
|
作者
Prabhakar, Nidhin T., V [1 ]
Xavier, Gintu [1 ]
Geetha, P. [1 ]
Soman, K. P. [1 ]
机构
[1] Amrita Vishwa Vidyapeetham, Ctr Excellence Computat Engn & Networking, Coimbatore, Tamil Nadu, India
关键词
diffusion; hyperspectral image classification; multinomial logistic regresion; semisupervised learning; hyperspectral image segmentation;
D O I
10.1016/j.procs.2015.02.140
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a fast, reliable and efficient method for improving hyperspectral image classification aided by segmentation. The Multinomial Logistic Regression( MLR) algorithm can be extended to a semi-supervised learning of the posterior class distribution using unlabeled samples actively selected from the dataset. Classification results obtained from regression model is improved by performing a maximum a posteriori segmentation as it considers the spatial information of the hyperspectral image. The addition of the spatial processing step prior to the above mentioned classification scheme improves the overall accuracy of the process. The accuracies obtained before and after applying the preprocessing are compared. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1817 / 1826
页数:10
相关论文
共 50 条
  • [1] A Subspace-Based Multinomial Logistic Regression for Hyperspectral Image Classification
    Khodadadzadeh, Mahdi
    Li, Jun
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (12) : 2105 - 2109
  • [2] Kronecker Factorization-Based Multinomial Logistic Regression for Hyperspectral Image Classification
    Wang, Xiaotao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] Semisupervised Hyperspectral Image Classification Using Soft Sparse Multinomial Logistic Regression
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 318 - 322
  • [4] Hyperspectral Image Denoising Using Legendre Fenchel Transformation for Improved Multinomial Logistic Regression based Classification
    Aswathy, C.
    Sowmya, V
    Gandhiraj, R.
    Soman, K. P.
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2015, : 1670 - 1674
  • [5] Hyperspectral Image Classification Powered by Khatri-Rao Decomposition-Based Multinomial Logistic Regression
    Wang, Xiaotao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Exact divide-and-conquer algorithm of multinomial logistic regression for hyperspectral image classification
    Wang, Xiaotao
    Liu, Fang
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02):
  • [7] Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification
    Cao, Faxian
    Yang, Zhijing
    Ren, Jinchang
    Ling, Wing-Kuen
    Zhao, Huimin
    Marshall, Stephen
    [J]. REMOTE SENSING, 2017, 9 (12)
  • [8] SUBSPACE MULTINOMIAL LOGISTIC REGRESSION ENSEMBLE FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Khodadadzadeh, Mahdi
    Ghamisi, Pedram
    Contreras, Cecilia
    Gloaguen, Richard
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5740 - 5743
  • [9] SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A MARKOV RANDOM FIELD AND SPARSE MULTINOMIAL LOGISTIC REGRESSION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2119 - +
  • [10] Real-Time Implementation of the Sparse Multinomial Logistic Regression for Hyperspectral Image Classification on GPUs
    Wu, Zebin
    Wang, Qicong
    Plaza, Antonio
    Li, Jun
    Sun, Le
    Wei, Zhihui
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (07) : 1456 - 1460