A Subspace-Based Multinomial Logistic Regression for Hyperspectral Image Classification

被引:68
|
作者
Khodadadzadeh, Mahdi [1 ]
Li, Jun [2 ]
Plaza, Antonio [1 ]
Bioucas-Dias, Jose M. [3 ,4 ]
机构
[1] Univ Extremadura, Escuela Politecn, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Caceres 10071, Spain
[2] Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ Lisbon, Inst Telecomunicacoes, P-1649004 Lisbon, Portugal
[4] Univ Lisbon, Inst Super Tecn, P-1649004 Lisbon, Portugal
关键词
Hyperspectral imaging; pixelwise classification; subspace multinomial logistic regression (MLR); FEATURE-SELECTION; SMLR;
D O I
10.1109/LGRS.2014.2320258
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we propose a multinomial-logistic-regression method for pixelwise hyperspectral classification. The feature vectors are formed by the energy of the spectral vectors projected on class-indexed subspaces. In this way, we model not only the linear mixing process that is often present in the hyperspectral measurement process but also the nonlinearities that are separable in the feature space defined by the aforementioned feature vectors. Our experimental results have been conducted using both simulated and real hyperspectral data sets, which are collected using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Reflective Optics System Imaging Spectrographic (ROSIS) system. These results indicate that the proposed method provides competitive results in comparison with other state-of-the-art approaches.
引用
收藏
页码:2105 / 2109
页数:5
相关论文
共 50 条
  • [1] SUBSPACE MULTINOMIAL LOGISTIC REGRESSION ENSEMBLE FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Khodadadzadeh, Mahdi
    Ghamisi, Pedram
    Contreras, Cecilia
    Gloaguen, Richard
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5740 - 5743
  • [2] Spatial Preprocessing Based Multinomial Logistic Regression For Hyperspectral Image Classification
    Prabhakar, Nidhin T., V
    Xavier, Gintu
    Geetha, P.
    Soman, K. P.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 : 1817 - 1826
  • [3] Kronecker Factorization-Based Multinomial Logistic Regression for Hyperspectral Image Classification
    Wang, Xiaotao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Subspace-Based Support Vector Machines for Hyperspectral Image Classification
    Gao, Lianru
    Li, Jun
    Khodadadzadeh, Mahdi
    Plaza, Antonio
    Zhang, Bing
    He, Zhijian
    Yan, Huiming
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (02) : 349 - 353
  • [5] Semisupervised Hyperspectral Image Classification Using Soft Sparse Multinomial Logistic Regression
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 318 - 322
  • [6] Hyperspectral Image Denoising Using Legendre Fenchel Transformation for Improved Multinomial Logistic Regression based Classification
    Aswathy, C.
    Sowmya, V
    Gandhiraj, R.
    Soman, K. P.
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2015, : 1670 - 1674
  • [7] Hyperspectral Image Classification Powered by Khatri-Rao Decomposition-Based Multinomial Logistic Regression
    Wang, Xiaotao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Exact divide-and-conquer algorithm of multinomial logistic regression for hyperspectral image classification
    Wang, Xiaotao
    Liu, Fang
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02):
  • [9] Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification
    Cao, Faxian
    Yang, Zhijing
    Ren, Jinchang
    Ling, Wing-Kuen
    Zhao, Huimin
    Marshall, Stephen
    [J]. REMOTE SENSING, 2017, 9 (12)
  • [10] SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A MARKOV RANDOM FIELD AND SPARSE MULTINOMIAL LOGISTIC REGRESSION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2119 - +