Magnetic edge states and magnetotransport in graphene antidot barriers

被引:10
|
作者
Thomsen, M. R. [1 ,2 ]
Power, S. R. [2 ,3 ]
Jauho, A. -P. [3 ]
Pedersen, T. G. [1 ,2 ]
机构
[1] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[2] CNG, DK-9220 Aalborg, Denmark
[3] Tech Univ Denmark, Dept Micro & Nanotechnol, DTU Nanotech, CNG, DK-2800 Kongens Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
ELECTRONS; ORBITS;
D O I
10.1103/PhysRevB.94.045438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic fields are often used for characterizing transport in nanoscale materials. Recent magnetotransport experiments have demonstrated that ballistic transport is possible in graphene antidot lattices (GALs). These experiments have inspired the present theoretical study of GALs in a perpendicular magnetic field. We calculate magnetotransport through graphene antidot barriers (GABs), which are finite rows of antidots arranged periodically in a pristine graphene sheet, using a tight-binding model and the Landauer-Buttiker formula. We show that GABs behave as ideal Dirac mass barriers for antidots smaller than the magnetic length and demonstrate the presence of magnetic edge states, which are localized states on the periphery of the antidots due to successive reflections on the antidot edge in the presence of a magnetic field. We show that these states are robust against variations in lattice configuration and antidot edge chirality. Moreover, we calculate the transmittance of disordered GABs and find that magnetic edge states survive a moderate degree of disorder. Due to the long phase-coherence length in graphene and the robustness of these states, we expect magnetic edge states to be observable in experiments as well.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Emergence of bound states in ballistic magnetotransport of graphene antidots
    Rakyta, P.
    Tovari, E.
    Csontos, M.
    Csonka, Sz.
    Csordas, A.
    Cserti, J.
    PHYSICAL REVIEW B, 2014, 90 (12)
  • [42] Armchair edge states in shear-strained graphene: Magnetic properties and quantum valley Hall edge states
    Li, Ruigang
    Fu, Pei-Hao
    Liu, Jun-Feng
    Wang, Jun
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [43] Magnetotransport through AFM-defined antidot arrays
    Dorn, A
    Sigrist, M
    Fuhrer, A
    Ihn, T
    Heinzel, T
    Ensslin, K
    Wegscheider, W
    Bichler, M
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4): : 719 - 722
  • [44] Magnetotransport in large diameter InAs/GaSb antidot lattices
    Eroms, J
    Zitzlsperger, M
    Weiss, D
    Smet, JH
    Albrecht, C
    Fleischmann, R
    Behet, M
    De Boeck, J
    Borghs, G
    PHYSICA B-CONDENSED MATTER, 1998, 256 : 409 - 412
  • [45] Magnetotransport through graphene nanoribbons at high magnetic fields
    Minke, S.
    Jhang, S. H.
    Wurm, J.
    Skourski, Y.
    Wosnitza, J.
    Strunk, C.
    Weiss, D.
    Richter, K.
    Eroms, J.
    PHYSICAL REVIEW B, 2012, 85 (19):
  • [46] Roles of edge states in the specific heat and magnetic ordering of graphene strips
    Yi, K. -S.
    Kim, D.
    Park, K. -S.
    Quinn, J. J.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1715 - 1717
  • [47] Noncollinear magnetic phases and edge states in graphene quantum Hall bars
    Lado, J. L.
    Fernandez-Rossier, J.
    PHYSICAL REVIEW B, 2014, 90 (16)
  • [48] Publisher Correction: Magnetic edge states and coherent manipulation of graphene nanoribbons
    Michael Slota
    Ashok Keerthi
    William K. Myers
    Evgeny Tretyakov
    Martin Baumgarten
    Arzhang Ardavan
    Hatef Sadeghi
    Colin J. Lambert
    Akimitsu Narita
    Klaus Müllen
    Lapo Bogani
    Nature, 2018, 561 : E31 - E31
  • [49] Magnetic edge states in Aharonov-Bohm graphene quantum rings
    Farghadan, R.
    Saffarzadeh, A.
    Semiromi, E. Heidari
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (21)
  • [50] Magnetotransport along a barrier: Multiple quantum interference of edge states
    Kadigrobov, A. M.
    Fistul, M. V.
    Efetov, K. B.
    PHYSICAL REVIEW B, 2006, 73 (23):