Magnetic edge states and magnetotransport in graphene antidot barriers

被引:10
|
作者
Thomsen, M. R. [1 ,2 ]
Power, S. R. [2 ,3 ]
Jauho, A. -P. [3 ]
Pedersen, T. G. [1 ,2 ]
机构
[1] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[2] CNG, DK-9220 Aalborg, Denmark
[3] Tech Univ Denmark, Dept Micro & Nanotechnol, DTU Nanotech, CNG, DK-2800 Kongens Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
ELECTRONS; ORBITS;
D O I
10.1103/PhysRevB.94.045438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic fields are often used for characterizing transport in nanoscale materials. Recent magnetotransport experiments have demonstrated that ballistic transport is possible in graphene antidot lattices (GALs). These experiments have inspired the present theoretical study of GALs in a perpendicular magnetic field. We calculate magnetotransport through graphene antidot barriers (GABs), which are finite rows of antidots arranged periodically in a pristine graphene sheet, using a tight-binding model and the Landauer-Buttiker formula. We show that GABs behave as ideal Dirac mass barriers for antidots smaller than the magnetic length and demonstrate the presence of magnetic edge states, which are localized states on the periphery of the antidots due to successive reflections on the antidot edge in the presence of a magnetic field. We show that these states are robust against variations in lattice configuration and antidot edge chirality. Moreover, we calculate the transmittance of disordered GABs and find that magnetic edge states survive a moderate degree of disorder. Due to the long phase-coherence length in graphene and the robustness of these states, we expect magnetic edge states to be observable in experiments as well.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] QUANTUM MAGNETOTRANSPORT IN A MESOSCOPIC ANTIDOT LATTICE
    ZOZULENKO, IV
    MAAO, FA
    HAUGE, EH
    PHYSICAL REVIEW B, 1995, 51 (11): : 7058 - 7063
  • [22] Magnetotransport in hexagonal and rectangular antidot lattices
    Takahara, Junichi
    Nomura, Akira
    Gamo, Kenji
    Takaoka, Sadao
    Murase, Kazuo
    Ahmed, Haroon
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1995, 34 (8 B): : 4325 - 4328
  • [23] Magnetotransport through mesoscopic antidot arrays
    Xu, Hongqi
    Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1997, 15 (04):
  • [24] Theory of magnetic edge states in chiral graphene nanoribbons
    Yazyev, Oleg V.
    Capaz, Rodrigo B.
    Louie, Steven G.
    PHYSICAL REVIEW B, 2011, 84 (11):
  • [25] Magnetic edge states and coherent manipulation of graphene nanoribbons
    Slota, Michael
    Keerthi, Ashok
    Myers, William K.
    Tretyakov, Evgeny
    Baumgarten, Martin
    Ardavan, Arzhang
    Sadeghi, Hatef
    Lambert, Colin J.
    Narita, Akimitsu
    Muellen, Klaus
    Bogani, Lapo
    NATURE, 2018, 557 (7707) : 691 - +
  • [26] Magnetic edge states and coherent manipulation of graphene nanoribbons
    Michael Slota
    Ashok Keerthi
    William K. Myers
    Evgeny Tretyakov
    Martin Baumgarten
    Arzhang Ardavan
    Hatef Sadeghi
    Colin J. Lambert
    Akimitsu Narita
    Klaus Müllen
    Lapo Bogani
    Nature, 2018, 557 : 691 - 695
  • [27] Mixed magnetic edge states in graphene quantum dots
    Li J.
    Liu X.
    Wan L.
    Qin X.
    Hu W.
    Yang J.
    Multifunctional Materials, 2022, 5 (01):
  • [28] Magnetotransport through antidot lattices: How does it depend on antidot diameter?
    Nagao, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (10) : 3183 - 3187
  • [29] Magnetotransport in 2DEG with magnetic barriers
    Hara, M
    Endo, A
    Katsumoto, S
    Iye, Y
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4): : 224 - 228
  • [30] Edge magnetotransport in graphene: A combined analytical and numerical study
    Stegmann, Thomas
    Lorke, Axel
    ANNALEN DER PHYSIK, 2015, 527 (9-10) : 723 - 736