3D Printing of Stretchable, Adhesive and Conductive Ti3C2Tx-Polyacrylic Acid Hydrogels

被引:13
|
作者
Zhao, Weijing [1 ]
Cao, Jie [2 ,3 ]
Wang, Fucheng [2 ,4 ]
Tian, Fajuan [2 ,4 ]
Zheng, Wenqian [2 ,4 ]
Bao, Yuqian [1 ]
Zhang, Kaiyue [2 ,4 ]
Zhang, Zhilin [2 ,4 ]
Yu, Jiawen [2 ,4 ]
Xu, Jingkun [2 ]
Liu, Ximei [2 ,4 ]
Lu, Baoyang [2 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Dept Endocrinol & Metab,Shanghai Diabet Inst,Shan, Shanghai Clin Ctr Diabet,Shanghai Key Clin Ctr Me, Shanghai 200240, Peoples R China
[2] Jiangxi Sci & Technol Normal Univ, Flexible Elect Innovat Inst, Jiangxi Key Lab Flexible Elect, Nanchang 330013, Jiangxi, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Chem & Chem Engn, Nanchang 330013, Jiangxi, Peoples R China
[4] Jiangxi Sci & Technol Normal Univ, Sch Pharm, Nanchang 330013, Jiangxi, Peoples R China
关键词
MXene; conductive hydrogel; 3D printing; pre-crosslinking; adhesion;
D O I
10.3390/polym14101992
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive Ti3C2Tx -polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing with Ti3C2Tx nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive, and conductive Ti3C2Tx-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable stretchability (similar to 622%), high electrical conductivity (5.13 S m(-1)), and good adhesion strength on varying substrates. We further demonstrate the capability of facilely printing such hydrogels into complex geometries like mesh and rhombus patterns with high resolution and robust integration.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Unleashing the power of 3D Ti3C2Tx: A breakthrough in electrochemical energy storage
    Song, Kai
    Abdurexit, Abdukeyum
    Abdiryim, Tursun
    Jamal, Ruxangul
    Wang, Xuguang
    Yang, Hongtao
    Fan, Nana
    Liu, Yajun
    Chemical Engineering Journal, 2024, 495
  • [42] Multimaterial 3D laser printing of cell-adhesive and cell-repellent hydrogels
    Schwegler, Niklas
    Gebert, Tanisha
    Villiou, Maria
    Colombo, Federico
    Schamberger, Barbara
    Selhuber-Unkel, Christine
    Thomas, Franziska
    Blasco, Eva
    JOURNAL OF PEPTIDE SCIENCE, 2024, 30
  • [43] Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing
    Li, Shi-Neng
    Yu, Zhi-Ran
    Guo, Bi-Fan
    Guo, Kun-Yu
    Li, Yang
    Gong, Li-Xiu
    Zhao, Li
    Bae, Joonho
    Tang, Long-Cheng
    NANO ENERGY, 2021, 90
  • [44] Multimaterial 3D Laser Printing of Cell-Adhesive and Cell-Repellent Hydrogels
    Schwegler, Niklas
    Gebert, Tanisha
    Villiou, Maria
    Colombo, Federico
    Schamberger, Barbara
    Selhuber-Unkel, Christine
    Thomas, Franziska
    Blasco, Eva
    SMALL, 2024, 20 (33)
  • [45] Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing
    Zhang, Biao
    Li, Shiya
    Hingorani, Hardik
    Serjouei, Ahmad
    Larush, Liraz
    Pawar, Amol A.
    Goh, Wei Huang
    Sakhaei, Amir Hosein
    Hashimoto, Michinao
    Kowsari, Kavin
    Magdassi, Shlomo
    Ge, Qi
    JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (20) : 3246 - 3253
  • [46] Stretchable Ultraviolet Curable Ionic Conductive Elastomers for Digital Light Processing Based 3D Printing
    He, Xiangnan
    Cheng, Jianxiang
    Li, Zhenqing
    Ye, Haitao
    Sun, Zechu
    Liu, Qingjiang
    Li, Honggeng
    Wang, Rong
    Ge, Qi
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (13)
  • [47] Fresh 3D Printing of Double Crosslinked Hyaluronic Acid/Pectin Hydrogels
    Catori, Daniele M.
    Lorevice, Marcos, V
    da Silva, Laura C. E.
    Candido, Geovany
    Millas, Ana L. C.
    de Oliveira, Marcelo C.
    MACROMOLECULAR SYMPOSIA, 2022, 406 (01)
  • [48] Evaluation of hyaluronic acid-polymacrolactone hydrogels with 3D printing capacity
    Nita, Loredana E.
    Nacu, Isabella
    Ghilan, Alina
    Rusu, Alina G.
    Serban, Alexandru M.
    Bercea, Maria
    Verestiuc, Liliana
    Chiriac, Aurica P.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 256
  • [49] Ti3C2Tx MXene-Activated Fast Gelation of Stretchable and Self-Healing Hydrogels: A Molecular Approach
    Ge, Gang
    Zhang, Yi-Zhou
    Zhang, Wenli
    Yuan, Wei
    El-Demellawi, Jehad K.
    Zhang, Peng
    Di Fabrizio, Enzo
    Dong, Xiaochen
    Alshareef, Husam N.
    ACS NANO, 2021, 15 (02) : 2698 - 2706
  • [50] Polysaccharide/Ti3C2Tx MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors
    He, Yang
    Deng, Zepeng
    Wang, Yan-Jie
    Zhao, Yiping
    Chen, Li
    CARBOHYDRATE POLYMERS, 2022, 291