3D Printing of Stretchable, Adhesive and Conductive Ti3C2Tx-Polyacrylic Acid Hydrogels

被引:13
|
作者
Zhao, Weijing [1 ]
Cao, Jie [2 ,3 ]
Wang, Fucheng [2 ,4 ]
Tian, Fajuan [2 ,4 ]
Zheng, Wenqian [2 ,4 ]
Bao, Yuqian [1 ]
Zhang, Kaiyue [2 ,4 ]
Zhang, Zhilin [2 ,4 ]
Yu, Jiawen [2 ,4 ]
Xu, Jingkun [2 ]
Liu, Ximei [2 ,4 ]
Lu, Baoyang [2 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Dept Endocrinol & Metab,Shanghai Diabet Inst,Shan, Shanghai Clin Ctr Diabet,Shanghai Key Clin Ctr Me, Shanghai 200240, Peoples R China
[2] Jiangxi Sci & Technol Normal Univ, Flexible Elect Innovat Inst, Jiangxi Key Lab Flexible Elect, Nanchang 330013, Jiangxi, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Chem & Chem Engn, Nanchang 330013, Jiangxi, Peoples R China
[4] Jiangxi Sci & Technol Normal Univ, Sch Pharm, Nanchang 330013, Jiangxi, Peoples R China
关键词
MXene; conductive hydrogel; 3D printing; pre-crosslinking; adhesion;
D O I
10.3390/polym14101992
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive Ti3C2Tx -polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing with Ti3C2Tx nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive, and conductive Ti3C2Tx-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable stretchability (similar to 622%), high electrical conductivity (5.13 S m(-1)), and good adhesion strength on varying substrates. We further demonstrate the capability of facilely printing such hydrogels into complex geometries like mesh and rhombus patterns with high resolution and robust integration.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels
    Crump, Michael R.
    Gong, Alex T.
    Chai, Daniel
    Bidinger, Sophia L.
    Pavinatto, Felippe J.
    Reihsen, Troy E.
    Sweet, Robert M.
    MacKenzie, J. Devin
    NANOTECHNOLOGY, 2019, 30 (36)
  • [32] 3D printing hydrogels for actuators: A review
    Zhang, Aokai
    Wang, Feng
    Chen, Lian
    Wei, Xianshuo
    Xue, Maoquan
    Yang, Feng
    Jiang, Shaohua
    CHINESE CHEMICAL LETTERS, 2021, 32 (10) : 2923 - 2932
  • [33] 3D printing functional nanocellulose hydrogels
    Fourmann, Olivier
    Siqueira, Gilberto
    Hausmann, Michael
    Schubert, Mark
    Zimmermann, Tanja
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [34] 3D printing hydrogels for actuators: A review
    Aokai Zhang
    Feng Wang
    Lian Chen
    Xianshuo Wei
    Maoquan Xue
    Feng Yang
    Shaohua Jiang
    ChineseChemicalLetters, 2021, 32 (10) : 2923 - 2932
  • [35] 3D printing lamellar Ti3C2Tx MXene/graphene hybrid aerogels for enhanced electromagnetic interference shielding performance
    Hua, Tianxiang
    Guo, Hao
    Qin, Jing
    Wu, Qixin
    Li, Lingying
    Qian, Bo
    RSC ADVANCES, 2022, 12 (38) : 24980 - 24987
  • [36] Development of a Conductive Filament for 3D Printing
    Kuts V.V.
    Razumov M.S.
    Dosumov A.K.
    Chevychelov S.A.
    Russian Engineering Research, 2021, 41 (10) : 974 - 976
  • [37] Ti3C2Tx-MXene based 2D/3D Ti3C2-TiO2-CuTiO3 heterostructure for enhanced pseudocapacitive performance
    Noman, Muhammad
    Baig, Mirza Mahmood
    Saqib, Qazi Muhammad
    Patil, Swapnil R.
    Patil, Chandrashekhar S.
    Kim, Jungmin
    Ko, Youngbin
    Lee, Eunho
    Hwang, Jinwoo
    Lee, Seung Goo
    Bae, Jinho
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [38] Unleashing the power of 3D Ti3C2Tx: A breakthrough in electrochemical energy storage
    Song, Kai
    Abdurexit, Abdukeyum
    Abdiryim, Tursun
    Jamal, Ruxangul
    Wang, Xuguang
    Yang, Hongtao
    Fan, Nana
    Liu, Yajun
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [39] Aligned Ti3C2Tx MXene for 3D Micropatterning via Additive Manufacturing
    Jambhulkar, Sayli
    Liu, Siying
    Vala, Pruthviraj
    Xu, Weiheng
    Ravichandran, Dharneedar
    Zhu, Yuxiang
    Bi, Kun
    Nian, Qiong
    Chen, Xiangfan
    Song, Kenan
    ACS NANO, 2021, 15 (07) : 12057 - 12068
  • [40] 3D crumpled Ti3C2Tx-xerogel architectures for optimized lithium storage
    Zhang, Chi
    Xiao, Junpeng
    Zhang, Xunpeng
    Xu, Dexin
    Gao, Hong
    ELECTROCHIMICA ACTA, 2022, 427