Random phase approximation in a self-consistent covariant approach: recent applications

被引:1
|
作者
Liang, Haozhao [1 ,2 ,3 ]
Niu, Yifei [1 ,4 ]
Meng, Jie [1 ,5 ,6 ]
Nguyen Van Giai [2 ,3 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[2] CNRS, IN2P3, Inst Phys Nucl, F-91406 Orsay, France
[3] Univ Paris 11, F-91406 Orsay, France
[4] Univ Zagreb, Fac Sci, Dept Phys, Zagreb, Croatia
[5] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China
[6] Univ Stellenbosch, Dept Phys, Stellenbosch, South Africa
关键词
NUCLEI; ISOSPIN;
D O I
10.1088/1742-6596/267/1/012042
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The relativistic Hartree-Fock (RHF) and Random Phase Approximation (RPA) methods are self-consistently applied to two issues of current interest. The first application is related to the isospin mixing corrections in the problem of super-allowed 0(+) -> 0(+) beta-transitions and the unitarity of the CKM matrix. The second application concerns the prediction of inclusive neutrino-nucleus cross-sections, where the results of the present model are compared with other approaches.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] SELF-CONSISTENT RANDOM-PHASE-APPROXIMATION CALCULATIONS OF MUON-CAPTURE RATES
    VANGIAI, N
    AUERBACH, N
    MEKJIAN, AZ
    PHYSICAL REVIEW LETTERS, 1981, 46 (22) : 1444 - 1447
  • [32] SUM-RULES, RANDOM-PHASE-APPROXIMATION, AND CONSTRAINED SELF-CONSISTENT FIELDS
    MARSHALEK, ER
    PROVIDEN.JD
    PHYSICAL REVIEW C, 1973, 7 (06): : 2281 - 2293
  • [33] Particle-hole excitations within a self-consistent random-phase approximation
    Gambacurta, D.
    Catara, F.
    PHYSICAL REVIEW B, 2008, 77 (20):
  • [34] Restoration of the Ikeda sum rule in self-consistent quasiparticle random-phase approximation
    Delion, DS
    Dukelsky, J
    Schuck, P
    PHYSICAL REVIEW C, 1997, 55 (05) : 2340 - 2344
  • [35] Self-consistent random phase approximation within the O(5) model and Fermi transitions
    Krmpotic, F
    de Passos, EJV
    Delion, DS
    Dukelsky, J
    Schuck, P
    NUCLEAR PHYSICS A, 1998, 637 (02) : 295 - 324
  • [37] Algebraically Self-Consistent Quasiclassical Approximation on Phase Space
    Bill Poirier
    Foundations of Physics, 2000, 30 : 1191 - 1226
  • [38] A consistent approach in relativistic random phase approximation
    Ma, ZY
    Van Giai, N
    Wandelt, A
    Vretenar, D
    Ring, P
    NUCLEAR PHYSICS A, 2001, 687 (1-2) : 64C - 71C
  • [39] Extension of the random phase approximation including the self-consistent coupling to two-phonon contributions
    Barbieri, C
    Dickhoff, WH
    PHYSICAL REVIEW C, 2003, 68 (01):
  • [40] Self-consistent continuum random-phase approximation calculations with finite-range interactions
    De Donno, V.
    Co, G.
    Anguiano, M.
    Lallena, A. M.
    PHYSICAL REVIEW C, 2011, 83 (04):