Pivotal discrepancy measures for Bayesian modelling of spatio-temporal data

被引:1
|
作者
Morris, Lindsay R. [1 ]
Sibanda, Nokuthaba [1 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, Wellington, New Zealand
关键词
Bayesian models; Goodness-of-fit; Pivotal discrepancy measure; Spatio-temporal models; CROSS-VALIDATION; ORDER-STATISTICS; DIAGNOSTICS; POINT; FIT;
D O I
10.1007/s10651-022-00529-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Within the field of geostatistics, Gaussian processes are a staple for modelling spatial and spatio-temporal data. Statistical literature is rich with estimation methods for the mean and covariance of such processes (in both frequentist and Bayesian contexts). Considerably less attention has been paid to developing goodness-of-fit tests for assessment of model adequacy. Jun et al. (Environmetrics 25(8):584-595, 2014) introduced a statistical test that uses pivotal discrepancy measures to assess goodness-of-fit in the Bayesian context. We present a modification and generalization of their statistical test. The initial method involves spatial partitioning of the data, followed by evaluation of a pivotal discrepancy measure at each posterior draw to obtain a posterior distribution of pivotal statistics. Order statistics from this distribution are used to obtain approximate p-values. Jun et al. (Environmetrics 25(8):584-595, 2014) use arbitrary partitions based on pre-existing spatial boundaries. The partitions are made to be of equal size. Our contribution is two-fold. We use K-means clustering to create the spatial partitions and we generalise Jun et al.'s approach to incorporate unequal partition sizes. Observations from a spatial or spatio-temporal process are partitioned using an appropriate feature vector that incorporates the geographic location of the observations into subsets (not necessarily of the same size). The method's viability is illustrated in a simulation study, and in an application to hoki (Macruronus novaezelandiae) catch data from a survey of the sub-Antarctic region.
引用
收藏
页码:33 / 53
页数:21
相关论文
共 50 条
  • [1] Pivotal discrepancy measures for Bayesian modelling of spatio-temporal data
    Lindsay R. Morris
    Nokuthaba Sibanda
    [J]. Environmental and Ecological Statistics, 2022, 29 : 33 - 53
  • [2] Modelling spatio-temporal environmental data
    Rasinmäki, J
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2003, 18 (10) : 877 - 886
  • [3] Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks
    Rigat, Fabio
    de Gunst, Mathisca
    van Pelt, Jaap
    [J]. BAYESIAN ANALYSIS, 2006, 1 (04): : 733 - 764
  • [4] Bayesian modeling of spatio-temporal data with R
    Shanmugam, Ramalingam
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1224 - 1224
  • [5] Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires
    Dabrowski, Joel Janek
    Pagendam, Daniel Edward
    Hilton, James
    Sanderson, Conrad
    MacKinlay, Daniel
    Huston, Carolyn
    Bolt, Andrew
    Kuhnert, Petra
    [J]. SPATIAL STATISTICS, 2023, 55
  • [6] A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y.
    Altmann, Y.
    McLaughlin, S.
    Abry, P.
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 331 - 334
  • [7] Fully Bayesian spatio-temporal modeling of FMRI data
    Woolrich, MW
    Jenkinson, M
    Brady, JM
    Smith, SM
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) : 213 - 231
  • [8] Modelling Spatio-Temporal Variation in Sparse Rainfall Data Using a Hierarchical Bayesian Regression Model
    Sabyasachi Mukhopadhyay
    Joseph O. Ogutu
    Gundula Bartzke
    Holly T. Dublin
    Hans-Peter Piepho
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2019, 24 : 369 - 393
  • [9] Modelling Spatio-Temporal Variation in Sparse Rainfall Data Using a Hierarchical Bayesian Regression Model
    Mukhopadhyay, Sabyasachi
    Ogutu, Joseph O.
    Bartzke, Gundula
    Dublin, Holly T.
    Piepho, Hans-Peter
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2019, 24 (02) : 369 - 393
  • [10] Data-driven spatio-temporal modelling of glioblastoma
    Jorgensen, Andreas Christ Solvsten
    Hill, Ciaran Scott
    Sturrock, Marc
    Tang, Wenhao
    Karamched, Saketh R.
    Gorup, Dunja
    Lythgoe, Mark F.
    Parrinello, Simona
    Marguerat, Samuel
    Shahrezaei, Vahid
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (03):