Shrinkage tuning parameter selection in precision matrices estimation

被引:25
|
作者
Lian, Heng [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
Adaptive lasso; BIC; Generalized approximate cross-validation; Precision matrix; SCAD penalty; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; DIVERGING NUMBER; ADAPTIVE LASSO; MODEL; REGULARIZATION; GRAPHS;
D O I
10.1016/j.jspi.2011.03.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recent literature provides many computational and modeling approaches for covariance matrices estimation in a penalized Gaussian graphical models but relatively little study has been carried out on the choice of the tuning parameter. This paper tries to fill this gap by focusing on the problem of shrinkage parameter selection when estimating sparse precision matrices using the penalized likelihood approach. Previous approaches typically used K-fold cross-validation in this regard. In this paper, we first derived the generalized approximate cross-validation for tuning parameter selection which is not only a more computationally efficient alternative, but also achieves smaller error rate for model fitting compared to leave-one-out cross-validation. For consistency in the selection of nonzero entries in the precision matrix, we employ a Bayesian information criterion which provably can identify the nonzero conditional correlations in the Gaussian model. Our simulations demonstrate the general superiority of the two proposed selectors in comparison with leave-one-out cross-validation, 10-fold cross-validation and Akaike information criterion. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2839 / 2848
页数:10
相关论文
共 50 条
  • [21] Shrinkage-to-Tapering Estimation of Large Covariance Matrices
    Chen, Xiaohui
    Wang, Z. Jane
    McKeown, Martin J.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5640 - 5656
  • [22] Estimation of High Dimensional Covariance Matrices by Shrinkage Algorithms
    Li, Jianbo
    Zhou, Jie
    Zhang, Bin
    Li, X. Rong
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 955 - 962
  • [23] A shrinkage approach to joint estimation of multiple covariance matrices
    Zongliang Hu
    Zhishui Hu
    Kai Dong
    Tiejun Tong
    Yuedong Wang
    [J]. Metrika, 2021, 84 : 339 - 374
  • [24] Multi-Target Shrinkage Estimation for Covariance Matrices
    Lancewicki, Tomer
    Aladjem, Mayer
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) : 6380 - 6390
  • [25] Nonlinear shrinkage estimation of large integrated covariance matrices
    Lam, Clifford
    Feng, Phoenix
    Hu, Charlie
    [J]. BIOMETRIKA, 2017, 104 (02) : 481 - 488
  • [26] Direct shrinkage estimation of large dimensional precision matrix
    Bodnar, Taras
    Gupta, Arjun K.
    Parolya, Nestor
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 223 - 236
  • [27] Parameter Estimation of Multinomial Logistic Regression Model using Least Absolute Shrinkage and Selection Operator (LASSO)
    Efendi, Achmad
    Ramadhan, Hafidz Wahyu
    [J]. 8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: COVERAGE OF BASIC SCIENCES TOWARD THE WORLD'S SUSTAINABILITY CHALLANGES, 2018, 2021
  • [28] Precision Parameter Estimation and Machine Learning
    Wandelt, Benjamin D.
    [J]. CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS, 2008, 1082 : 339 - 344
  • [29] On Bayesian lasso variable selection and the specification of the shrinkage parameter
    Anastasia Lykou
    Ioannis Ntzoufras
    [J]. Statistics and Computing, 2013, 23 : 361 - 390
  • [30] Nonequilibrium Effects on the Precision of Parameter Estimation
    Cheng, W. W.
    [J]. ANNALEN DER PHYSIK, 2023, 535 (11)