A shrinkage approach to joint estimation of multiple covariance matrices

被引:0
|
作者
Zongliang Hu
Zhishui Hu
Kai Dong
Tiejun Tong
Yuedong Wang
机构
[1] Shenzhen University,College of Mathematics and Statistics
[2] University of Science and Technology of China,Department of Statistics and Finance
[3] Hong Kong Baptist University,Department of Mathematics
[4] University of California,Department of Statistics and Applied Probability
来源
Metrika | 2021年 / 84卷
关键词
Covariance matrices; Joint estimation; Optimal estimator; Quadratic loss function; Shrinkage parameter; Stein loss function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a shrinkage framework for jointly estimating multiple covariance matrices by shrinking the sample covariance matrices towards the pooled sample covariance matrix. This framework allows us to borrow information across different groups. We derive the optimal shrinkage parameters under the Stein and quadratic loss functions, and prove that our derived estimators are asymptotically optimal when the sample size or the number of groups tends to infinity. Simulation studies demonstrate that our proposed shrinkage method performs favorably compared to the existing methods.
引用
收藏
页码:339 / 374
页数:35
相关论文
共 50 条
  • [1] A shrinkage approach to joint estimation of multiple covariance matrices
    Hu, Zongliang
    Hu, Zhishui
    Dong, Kai
    Tong, Tiejun
    Wang, Yuedong
    [J]. METRIKA, 2021, 84 (03) : 339 - 374
  • [2] Efficient Estimation of Covariance Matrices using Posterior Mode Multiple Shrinkage
    Giordani, Paolo
    Mun, Xiuyan
    Kohn, Robert
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2013, 11 (01) : 154 - 192
  • [3] SHRINKAGE ESTIMATION OF HIGH DIMENSIONAL COVARIANCE MATRICES
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2937 - 2940
  • [4] Shrinkage-to-Tapering Estimation of Large Covariance Matrices
    Chen, Xiaohui
    Wang, Z. Jane
    McKeown, Martin J.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5640 - 5656
  • [5] Multi-Target Shrinkage Estimation for Covariance Matrices
    Lancewicki, Tomer
    Aladjem, Mayer
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) : 6380 - 6390
  • [6] Nonlinear shrinkage estimation of large integrated covariance matrices
    Lam, Clifford
    Feng, Phoenix
    Hu, Charlie
    [J]. BIOMETRIKA, 2017, 104 (02) : 481 - 488
  • [7] Estimation of High Dimensional Covariance Matrices by Shrinkage Algorithms
    Li, Jianbo
    Zhou, Jie
    Zhang, Bin
    Li, X. Rong
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 955 - 962
  • [8] NONLINEAR SHRINKAGE ESTIMATION OF LARGE-DIMENSIONAL COVARIANCE MATRICES
    Ledoit, Olivier
    Wolf, Michael
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 1024 - 1060
  • [9] Shrinkage estimation of large covariance matrices: Keep it simple, statistician?
    Ledoit, Olivier
    Wolf, Michael
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 186
  • [10] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107