Shrinkage estimation of large covariance matrices: Keep it simple, statistician?

被引:13
|
作者
Ledoit, Olivier [1 ,2 ]
Wolf, Michael [1 ]
机构
[1] Univ Zurich, Dept Econ, Zurich, Switzerland
[2] AlphaCrest Capital Management, New York, NY USA
关键词
Large-dimensional asymptotics; Random matrix theory; Rotation equivariance; LIMITING SPECTRAL DISTRIBUTION; EIGENVALUES;
D O I
10.1016/j.jmva.2021.104796
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is to be minimized. We solve the problem of optimal covariance matrix estimation under a variety of loss functions motivated by statistical precedent, probability theory, and differential geometry. A key ingredient of our nonlinear shrinkage methodology is a new estimator of the angle between sample and population eigenvectors, without making strong assumptions on the population eigenvalues. We also introduce a broad family of covariance matrix estimators that can handle all regular functional transformations of the population covariance matrix under large-dimensional asymptotics. In addition, we compare via Monte Carlo simulations our methodology to two simpler ones from the literature, linear shrinkage and shrinkage based on the spiked covariance model. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Shrinkage-to-Tapering Estimation of Large Covariance Matrices
    Chen, Xiaohui
    Wang, Z. Jane
    McKeown, Martin J.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5640 - 5656
  • [2] Nonlinear shrinkage estimation of large integrated covariance matrices
    Lam, Clifford
    Feng, Phoenix
    Hu, Charlie
    [J]. BIOMETRIKA, 2017, 104 (02) : 481 - 488
  • [3] NONLINEAR SHRINKAGE ESTIMATION OF LARGE-DIMENSIONAL COVARIANCE MATRICES
    Ledoit, Olivier
    Wolf, Michael
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 1024 - 1060
  • [4] Quadratic shrinkage for large covariance matrices
    Ledoit, Olivier
    Wolf, Michael
    [J]. BERNOULLI, 2022, 28 (03) : 1519 - 1547
  • [5] Linear shrinkage estimation of large covariance matrices using factor models
    Ikeda, Yuki
    Kubokawa, Tatsuya
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 152 : 61 - 81
  • [6] SHRINKAGE ESTIMATION OF HIGH DIMENSIONAL COVARIANCE MATRICES
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2937 - 2940
  • [7] A shrinkage approach to joint estimation of multiple covariance matrices
    Hu, Zongliang
    Hu, Zhishui
    Dong, Kai
    Tong, Tiejun
    Wang, Yuedong
    [J]. METRIKA, 2021, 84 (03) : 339 - 374
  • [8] Multi-Target Shrinkage Estimation for Covariance Matrices
    Lancewicki, Tomer
    Aladjem, Mayer
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) : 6380 - 6390
  • [9] Estimation of High Dimensional Covariance Matrices by Shrinkage Algorithms
    Li, Jianbo
    Zhou, Jie
    Zhang, Bin
    Li, X. Rong
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 955 - 962
  • [10] A shrinkage approach to joint estimation of multiple covariance matrices
    Zongliang Hu
    Zhishui Hu
    Kai Dong
    Tiejun Tong
    Yuedong Wang
    [J]. Metrika, 2021, 84 : 339 - 374