Semantic interactive image retrieval combining visual and conceptual content description

被引:24
|
作者
Ferecatu, Marin [1 ]
Boujemaa, Nozha [1 ]
Crucianu, Michel [2 ]
机构
[1] INRIA Rocquencourt, IMEDIA Team, F-78153 Le Chesnay, France
[2] Conservatoire Natl Arts & Metiers, Vertigo Team, F-75141 Paris 03, France
关键词
cross-modal image retrieval; relevance feedback; active learning; semantic indexing;
D O I
10.1007/s00530-007-0094-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the challenge of semantic gap reduction for image retrieval through an improved support vector machines (SVM)-based active relevance feedback framework, together with a hybrid visual and conceptual content representation and retrieval. We introduce a new feature vector based on projecting the keywords associated to an image on a set of "key concepts" with the help of an external lexical database. We then put forward two improvements of SVM-based relevance feedback method. First, to optimize the transfer of information between the user and the system, we introduce a new active learning selection criterion that minimizes redundancy between the candidate images shown to the user. Second, as most image classes span a wide range of scales in the description space, we argue that the insensitivity of the SVM to the scale of the data is desirable in this context and we show how to obtain it by using specific kernel functions. Experimental evaluations show that the joint use of the new concept-based feature vector and the visual features with our relevance feedback scheme can significantly improve the quality of the results.
引用
收藏
页码:309 / 322
页数:14
相关论文
共 50 条
  • [21] Efficient and interactive spatial-semantic image retrieval
    Ryosuke Furuta
    Naoto Inoue
    Toshihiko Yamasaki
    [J]. Multimedia Tools and Applications, 2019, 78 : 18713 - 18733
  • [22] Interactive Relevance Visual Learning for Image Retrieval
    Fu, Hsin-Chia
    Wang, Z. H.
    Wang, W. J.
    Pao, Hsiao-Tien
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I (IWANN 2015), 2015, 9094 : 227 - 240
  • [23] Efficient and Interactive Spatial-Semantic Image Retrieval
    Furuta, Ryosuke
    Inoue, Naoto
    Yamasaki, Toshihiko
    [J]. MULTIMEDIA MODELING, MMM 2018, PT I, 2018, 10704 : 190 - 202
  • [24] Efficient and interactive spatial-semantic image retrieval
    Furuta, Ryosuke
    Inoue, Naoto
    Yamasaki, Toshihiko
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (13) : 18713 - 18733
  • [25] Semantic Guided Interactive Image Retrieval for plant identification
    Fernandes Goncalves, Filipe Marcel
    Guilherme, Ivan Rizzo
    Guimaraes Pedronette, Daniel Carlos
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 12 - 26
  • [26] Interactive image retrieval by color distribution content
    Colombo, C
    Del Bimbo, A
    Genovesi, I
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2000, 7 (01) : 79 - 88
  • [27] Mining image content associations for visual semantic modeling in geospatial information indexing and retrieval
    Shvu, CR
    Barb, AS
    Davis, CH
    [J]. IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 5622 - 5625
  • [28] Combining textual and visual features for image retrieval
    Martinez-Fernandez, J. L.
    Villena Roman, Julio
    Garcia-Serrano, Ana M.
    Gonzalez-Cristobal, Jose Carlos
    [J]. ACCESSING MULTILINGUAL INFORMATION REPOSITORIES, 2006, 4022 : 680 - 691
  • [29] An Efficient Image Search for Content Based Image Retrieval using Semantic-Assisted Visual Hashing
    Valarmathi, N.
    Annapoorani, S.
    [J]. INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2021, 11 (02): : L38 - L44
  • [30] Combining Content and Context Similarities for Image Retrieval
    Wan, Xiaojun
    [J]. ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS, 2009, 5478 : 749 - 754