Combining textual and visual features for image retrieval

被引:0
|
作者
Martinez-Fernandez, J. L. [1 ]
Villena Roman, Julio
Garcia-Serrano, Ana M.
Gonzalez-Cristobal, Jose Carlos
机构
[1] Univ Carlos III Madrid, Madrid, Spain
[2] Univ Politecn Madrid, Fac Informat, Madrid, Spain
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the approaches used by the MIRACLE team to image retrieval at ImageCLEF 2005. Text-based and content-based techniques have been tested, along with combination of both types of methods to improve image retrieval. The text-based experiments defined this year try to use semantic information sources, like thesaurus with semantic data or text structure. On the other hand, content-based techniques are not part of the main expertise of the MIRACLE team, but multidisciplinary participation in all aspects of information retrieval has been pursued. We rely on a publicly available image retrieval system (GIFT 4) when needed.
引用
收藏
页码:680 / 691
页数:12
相关论文
共 50 条
  • [1] An Integrated Approach for Medical Image Retrieval through Combining Textual and Visual Features
    Ye, Zheng
    Huang, Xiangji
    Hu, Qinmin
    Lin, Hongfei
    [J]. MULTILINGUAL INFORMATION ACCESS EVALUATION II: MULTIMEDIA EXPERIMENTS, PT II, 2010, 6242 : 195 - +
  • [2] Combining textual and visual features for cross-language medical image retrieval
    Cheng, Pei-Cheng
    Chien, Been-Chian
    Ke, Hao-Ren
    Yang, Wei-Pang
    [J]. ACCESSING MULTILINGUAL INFORMATION REPOSITORIES, 2006, 4022 : 712 - 723
  • [3] Fine-grained Image Classification and Retrieval by Combining Visual and Locally Pooled Textual Features
    Mafla, Andres
    Dey, Sounak
    Biten, Ali Furkan
    Gomez, Lluis
    Karatzas, Dimosthenis
    [J]. 2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2939 - 2948
  • [4] Combining visual features for medical image retrieval and annotation
    Xiong, Wei
    Qiu, Bo
    Tian, Qi
    Xu, Changsheng
    Ong, S. H.
    Foong, Kelvin
    [J]. ACCESSING MULTILINGUAL INFORMATION REPOSITORIES, 2006, 4022 : 632 - 641
  • [5] Information Fusion for Combining Visual and Textual Image Retrieval in ImageCLEF@ICPR
    Zhou, Xin
    Depeursinge, Adrien
    Mueller, Henning
    [J]. RECOGNIZING PATTERNS IN SIGNALS, SPEECH, IMAGES, AND VIDEOS, 2010, 6388 : 129 - 137
  • [6] Combining visual features with semantics for a more effective image retrieval
    Kherfi, ML
    Brahmi, D
    Ziou, D
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 961 - 964
  • [7] Remote-sensing image retrieval by combining image visual and semantic features
    Wang, M.
    Wan, Q. M.
    Gu, L. B.
    Song, T. Y.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (12) : 4200 - 4223
  • [8] Improving classification of an industrial document image database by combining visual and textual features
    Augereau, Olivier
    Journet, Nicholas
    Vialard, Anne
    Domenger, Jean-Philippe
    [J]. 2014 11TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS 2014), 2014, : 314 - 318
  • [9] Combining Salient points and Visual Perception Texture Features for Image Retrieval
    Jian, Muwei
    Sun, Jiquan
    Liu, Jing
    Yin, Cheng
    Qin, Yan
    [J]. 2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 51 - +
  • [10] VAST: Automatically combining keywords and visual features for web image retrieval
    Jin, Hai
    He, Ruhan
    Tao, Wenbing
    Sun, Aobing
    [J]. 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, VOLS I-III: INNOVATIONS TOWARD FUTURE NETWORKS AND SERVICES, 2008, : 2188 - 2193