VAST: Automatically combining keywords and visual features for web image retrieval

被引:0
|
作者
Jin, Hai [1 ]
He, Ruhan [1 ]
Tao, Wenbing [1 ]
Sun, Aobing [1 ]
机构
[1] Huazhong Univ Sci & Technol, Cluster & Grid Comp Lab, Serv Comp Technol & Syst Lab, Wuhan 430074, Peoples R China
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A large-scale image retrieval system for the WWW, named VAST (VisuAl & SemanTic image search), is presented in this paper. Based on the existing inverted file and visual feature clusters, we form a semantic network on top of the keyword association on the visual feature clusters. The system is able to automatically combine keyword and visual features for retrieval by the semantic network. The combination is automatic, simple, and very fast, which is suitable for large-scale web dataset. Meanwhile, the retrieval takes advantage of the semantic contents of the images in addition to the low-level features, which remarkably improves the retrieval precision. The experimental results demonstrate the superiority of the system.
引用
收藏
页码:2188 / 2193
页数:6
相关论文
共 50 条
  • [1] Using Multi-Modal Semantic Association Rules to fuse keywords and visual features automatically for Web image retrieval
    He, Ruhan
    Xiong, Naixue
    Yang, Laurence T.
    Park, Jong Hyuk
    [J]. INFORMATION FUSION, 2011, 12 (03) : 223 - 230
  • [2] Unifying keywords and visual features within one-step search for web image retrieval
    He, Ruhan
    Jin, Hai
    Tao, Wenbing
    Sun, Aobing
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2006, PROCEEDINGS, 2006, 4261 : 527 - +
  • [3] Combining textual and visual features for image retrieval
    Martinez-Fernandez, J. L.
    Villena Roman, Julio
    Garcia-Serrano, Ana M.
    Gonzalez-Cristobal, Jose Carlos
    [J]. ACCESSING MULTILINGUAL INFORMATION REPOSITORIES, 2006, 4022 : 680 - 691
  • [4] Combining visual features for medical image retrieval and annotation
    Xiong, Wei
    Qiu, Bo
    Tian, Qi
    Xu, Changsheng
    Ong, S. H.
    Foong, Kelvin
    [J]. ACCESSING MULTILINGUAL INFORMATION REPOSITORIES, 2006, 4022 : 632 - 641
  • [5] Combining visual features with semantics for a more effective image retrieval
    Kherfi, ML
    Brahmi, D
    Ziou, D
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 961 - 964
  • [6] Unifying keywords and visual contents in image retrieval
    Zhou, XS
    Huang, TS
    [J]. IEEE MULTIMEDIA, 2002, 9 (02) : 23 - 32
  • [7] Image retrieval by Web context: Filling the gap between image keywords and usage keywords
    Zettsu, K
    Kidawara, Y
    Tanaka, K
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2003, 2736 : 579 - 588
  • [8] Remote-sensing image retrieval by combining image visual and semantic features
    Wang, M.
    Wan, Q. M.
    Gu, L. B.
    Song, T. Y.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (12) : 4200 - 4223
  • [9] Combining Salient points and Visual Perception Texture Features for Image Retrieval
    Jian, Muwei
    Sun, Jiquan
    Liu, Jing
    Yin, Cheng
    Qin, Yan
    [J]. 2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 51 - +
  • [10] Combining words and object-based visual features in image retrieval
    Nakagawa, A
    Kutics, A
    Tanaka, K
    Nakajima, M
    [J]. 12TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2003, : 354 - 359