Solution validation technique for optimal shakedown design problems

被引:0
|
作者
Blazevicius, G. [1 ]
Atkociunas, J. [1 ]
Liepa, L. [1 ]
Rimkus, L. [1 ]
Merkeviciute, D. [1 ]
机构
[1] Vilnius Gediminas Tech Univ, Sauletekio Al 11, LT-10223 Vilnius, Lithuania
关键词
optimal shakedown design; elastic-plastic plates; energy principles; mathematical programming; equilibrium finite elements; Matlab; Rosen gradient projection method; PLATES;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Optimization problems of elastic-plastic steel structures subjected to variable repeated loads are nonconvex mathematical programming problems. Modern computer technology allows conjoining shakedown theory, optimization and ever stricter standardized design requirements in a single mathematical problem formulation. However it rises a question of reliability: easily achieved solution should not be taken for granted but should be adequately assessed. This paper focuses on the application of the Rosen gradient projection method optimality criterion for the validation of MATLAB optimal shakedown design problem solution for circular plates in the aspect of internal forces' and deformations' numerical precision.
引用
收藏
页码:42 / 46
页数:5
相关论文
共 50 条
  • [1] Solution validation technique for optimal shakedown design problems
    Atkociunas, J.
    Liepa, L.
    Blazevicius, G.
    Merkeviciute, D.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 56 (04) : 853 - 863
  • [2] Solution validation technique for optimal shakedown design problems
    J. Atkočiūnas
    L. Liepa
    G. Blaževičius
    D. Merkevičiūtė
    Structural and Multidisciplinary Optimization, 2017, 56 : 853 - 863
  • [3] Optimal shakedown design of plates
    Atkociunas, J.
    Rimkus, L.
    Skarlzauskas, V.
    Jarmolajeva, E.
    MECHANIKA, 2007, 67 (05): : 14 - 23
  • [4] MATHEMATICAL MODELS FOR OPTIMAL SHAKEDOWN TRUSSES DESIGN PROBLEMS IN CASE OF MOVING LOAD
    Atkociunas, Juozas
    Merkeviciute, Dalia
    Venskus, Arturas
    Nagevicius, Juozas
    TECHNOLOGICAL AND ECONOMIC DEVELOPMENT OF ECONOMY, 2007, 13 (02) : 93 - 99
  • [5] Optimal shakedown design of circular plates
    Giambanco, F.
    Palizzolo, L.
    Polizzotto, C.
    Journal of Engineering Mechanics, 1994, 120 (12) : 2535 - 2555
  • [6] OPTIMAL SHAKEDOWN DESIGN OF CIRCULAR PLATES
    GIAMBANCO, F
    PALIZZOLO, L
    POLIZZOTTO, C
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1994, 120 (12): : 2535 - 2556
  • [7] OPTIMAL SHAKEDOWN DESIGN OF BEAM STRUCTURES
    GIAMBANCO, F
    PALIZZOLO, L
    POLIZZOTTO, C
    STRUCTURAL OPTIMIZATION, 1994, 8 (2-3): : 156 - 167
  • [8] Global Solution of Optimal Shape Design Problems
    Fakharzadeh, A. J.
    Rubio, J. E.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (01): : 143 - 155
  • [9] Iterative algorithm for optimal shakedown design of plate
    Atkociunas, Juozas
    Rimkus, Liudvikas
    Skarzauskas, Valentinas
    Jarmolajeva, Ela
    9TH INTERNATIONAL CONFERENCE: MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, VOLS 1-3, 2008, : 887 - 897
  • [10] Nonlinear programming and optimal shakedown design of frames
    Atkociunas, J.
    Merkeviciute, A.
    Venskus, A.
    Skarzauskas, V.
    MECHANIKA, 2007, 64 (02): : 27 - 33