Solution validation technique for optimal shakedown design problems

被引:0
|
作者
Blazevicius, G. [1 ]
Atkociunas, J. [1 ]
Liepa, L. [1 ]
Rimkus, L. [1 ]
Merkeviciute, D. [1 ]
机构
[1] Vilnius Gediminas Tech Univ, Sauletekio Al 11, LT-10223 Vilnius, Lithuania
来源
MECHANIKA 2016: PROCEEDINGS OF THE 21ST INTERNATIONAL SCIENTIFIC CONFERENCE | 2016年
关键词
optimal shakedown design; elastic-plastic plates; energy principles; mathematical programming; equilibrium finite elements; Matlab; Rosen gradient projection method; PLATES;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Optimization problems of elastic-plastic steel structures subjected to variable repeated loads are nonconvex mathematical programming problems. Modern computer technology allows conjoining shakedown theory, optimization and ever stricter standardized design requirements in a single mathematical problem formulation. However it rises a question of reliability: easily achieved solution should not be taken for granted but should be adequately assessed. This paper focuses on the application of the Rosen gradient projection method optimality criterion for the validation of MATLAB optimal shakedown design problem solution for circular plates in the aspect of internal forces' and deformations' numerical precision.
引用
收藏
页码:42 / 46
页数:5
相关论文
共 50 条
  • [21] Computational methods for optimal shakedown design of FE structures
    Giambanco, F
    Palizzolo, L
    Cirone, L
    STRUCTURAL OPTIMIZATION, 1998, 15 (3-4) : 284 - 295
  • [22] OPTIMAL DESIGN OF SHAKEDOWN PLATES, REINFORCED BY INTERCONTOUR SUPPORTS
    POCHTMAN, YM
    PYATIGORSKII, ZI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1975, (03): : 239 - 242
  • [23] SOLUTION OF MULTICRITERIAL PROBLEMS OF OPTIMAL-DESIGN OF MACHINES AND MECHANISMS
    CHERNOVENKO, AG
    GRIGORENKO, GI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1984, (04): : 66 - 70
  • [24] A Chebyshev technique for the solution of optimal control problems with nonlinear programming methods
    Mezzadri, Francesco
    Galligani, Emanuele
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 121 : 95 - 108
  • [25] Optimal shakedown design of trusses: Strength, stiffness and stability constraints
    Merkeviciute, D
    Atkociunas, J
    8TH INTERNATIONAL CONFERENCE ON MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, 2004, : 830 - 839
  • [26] Shakedown optimal design of reinforced concrete structures by evolution strategies
    Rizzo, S
    Spallino, R
    Giambanco, G
    ENGINEERING COMPUTATIONS, 2000, 17 (04) : 440 - 458
  • [27] A fully automatic force method for the optimal shakedown design of frames
    Spiliopoulos, KV
    COMPUTATIONAL MECHANICS, 1999, 23 (04) : 299 - 307
  • [28] Optimal shakedown design of steel framed structures according to standards
    Blaževičius, G.
    Atkočiūnas, J.
    Annals of Solid and Structural Mechanics, 2015, 7 (1-2) : 17 - 26
  • [29] A fully automatic force method for the optimal shakedown design of frames
    K. V. Spiliopoulos
    Computational Mechanics, 1999, 23 : 299 - 307
  • [30] Design and performance evaluation of an optimization methodology for optimal solution of cellular layout design problems
    Ali, SZ
    Read, RJ
    SCS 2003: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2003, : 521 - 524