Solution validation technique for optimal shakedown design problems

被引:0
|
作者
J. Atkočiūnas
L. Liepa
G. Blaževičius
D. Merkevičiūtė
机构
[1] Vilnius Gediminas Technical University,Department of Structural Mechanics
关键词
Optimal shakedown design; Elastic-plastic plates; Energy principles; Mathematical programming; Equilibrium finite elements; Rosen gradient projection method;
D O I
暂无
中图分类号
学科分类号
摘要
Modern computer technology allows conjoining shakedown theory, optimization and ever stricter standardized design requirements in a single mathematical problem formulation. However it raises a question of reliability: easily achieved solution should not be taken for granted but should be adequately assessed. This paper focuses on the physical validation technique for optimal shakedown design problem solution in the aspect of Melan theorem (statics) and residual deformation compatibility (kinematics). For that purpose Rosen gradient projection method is used. Optimization problem of bending circular, symmetric plate at shakedown, which is subjected by a variable repeated load, is considered for illustration of the validation technique.
引用
收藏
页码:853 / 863
页数:10
相关论文
共 50 条
  • [1] Solution validation technique for optimal shakedown design problems
    Atkociunas, J.
    Liepa, L.
    Blazevicius, G.
    Merkeviciute, D.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 56 (04) : 853 - 863
  • [2] Solution validation technique for optimal shakedown design problems
    Blazevicius, G.
    Atkociunas, J.
    Liepa, L.
    Rimkus, L.
    Merkeviciute, D.
    MECHANIKA 2016: PROCEEDINGS OF THE 21ST INTERNATIONAL SCIENTIFIC CONFERENCE, 2016, : 42 - 46
  • [3] Optimal shakedown design of plates
    Atkociunas, J.
    Rimkus, L.
    Skarlzauskas, V.
    Jarmolajeva, E.
    MECHANIKA, 2007, 67 (05): : 14 - 23
  • [4] MATHEMATICAL MODELS FOR OPTIMAL SHAKEDOWN TRUSSES DESIGN PROBLEMS IN CASE OF MOVING LOAD
    Atkociunas, Juozas
    Merkeviciute, Dalia
    Venskus, Arturas
    Nagevicius, Juozas
    TECHNOLOGICAL AND ECONOMIC DEVELOPMENT OF ECONOMY, 2007, 13 (02) : 93 - 99
  • [5] Optimal shakedown design of circular plates
    Giambanco, F.
    Palizzolo, L.
    Polizzotto, C.
    Journal of Engineering Mechanics, 1994, 120 (12) : 2535 - 2555
  • [6] OPTIMAL SHAKEDOWN DESIGN OF CIRCULAR PLATES
    GIAMBANCO, F
    PALIZZOLO, L
    POLIZZOTTO, C
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1994, 120 (12): : 2535 - 2556
  • [7] OPTIMAL SHAKEDOWN DESIGN OF BEAM STRUCTURES
    GIAMBANCO, F
    PALIZZOLO, L
    POLIZZOTTO, C
    STRUCTURAL OPTIMIZATION, 1994, 8 (2-3): : 156 - 167
  • [8] Global Solution of Optimal Shape Design Problems
    Fakharzadeh, A. J.
    Rubio, J. E.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (01): : 143 - 155
  • [9] Iterative algorithm for optimal shakedown design of plate
    Atkociunas, Juozas
    Rimkus, Liudvikas
    Skarzauskas, Valentinas
    Jarmolajeva, Ela
    9TH INTERNATIONAL CONFERENCE: MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, VOLS 1-3, 2008, : 887 - 897
  • [10] Nonlinear programming and optimal shakedown design of frames
    Atkociunas, J.
    Merkeviciute, A.
    Venskus, A.
    Skarzauskas, V.
    MECHANIKA, 2007, 64 (02): : 27 - 33