Spectral Semi-Supervised Discourse Relation Classification

被引:0
|
作者
Fisher, Robert [1 ]
Simmons, Reid [1 ]
机构
[1] Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discourse parsing is the process of discovering the latent relational structure of a long form piece of text and remains a significant open challenge. One of the most difficult tasks in discourse parsing is the classification of implicit discourse relations. Most state-of-the-art systems do not leverage the great volume of unlabeled text available on the web-they rely instead on human annotated training data. By incorporating a mixture of labeled and unlabeled data, we are able to improve relation classification accuracy, reduce the need for annotated data, while still retaining the capacity to use labeled data to ensure that specific desired relations are learned. We achieve this using a latent variable model that is trained in a reduced dimensionality subspace using spectral methods. Our approach achieves an F-1 score of 0.485 on the implicit relation labeling task for the Penn Discourse Treebank.
引用
收藏
页码:89 / 93
页数:5
相关论文
共 50 条
  • [41] Semi-supervised generalized eigenvalues classification
    Marco Viola
    Mara Sangiovanni
    Gerardo Toraldo
    Mario R. Guarracino
    [J]. Annals of Operations Research, 2019, 276 : 249 - 266
  • [42] Semi-supervised ensemble classification in subspaces
    Yu, Guoxian
    Zhang, Guoji
    Yu, Zhiwen
    Domeniconi, Carlotta
    You, Jane
    Han, Guoqiang
    [J]. APPLIED SOFT COMPUTING, 2012, 12 (05) : 1511 - 1522
  • [43] Classification by semi-supervised discriminative regularization
    Wu, Fei
    Wang, Wenhua
    Yang, Yi
    Zhuang, Yueting
    Nie, Feiping
    [J]. NEUROCOMPUTING, 2010, 73 (10-12) : 1641 - 1651
  • [44] Semi-supervised Classification of Chest Radiographs
    Pooch, Eduardo H. P.
    Ballester, Pedro
    Barros, Rodrigo C.
    [J]. INTERPRETABLE AND ANNOTATION-EFFICIENT LEARNING FOR MEDICAL IMAGE COMPUTING, IMIMIC 2020, MIL3ID 2020, LABELS 2020, 2020, 12446 : 172 - 179
  • [45] Semi-supervised Genetic Programming for Classification
    Arcanjo, Filipe de L.
    Pappa, Gisele L.
    Bicalho, Paulo V.
    Meira, Wagner, Jr.
    da Silva, Altigran S.
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1259 - 1266
  • [46] Semi-supervised classification with privileged information
    Zhiquan Qi
    Yingjie Tian
    Lingfeng Niu
    Bo Wang
    [J]. International Journal of Machine Learning and Cybernetics, 2015, 6 : 667 - 676
  • [47] Sparse regularization for semi-supervised classification
    Fan, Mingyu
    Gu, Nannan
    Qiao, Hong
    Zhang, Bo
    [J]. PATTERN RECOGNITION, 2011, 44 (08) : 1777 - 1784
  • [48] Manifold contraction for semi-supervised classification
    EnLiang Hu
    SongCan Chen
    XueSong Yin
    [J]. Science China Information Sciences, 2010, 53 : 1170 - 1187
  • [49] Semi-supervised Ant Evolutionary Classification
    He, Ping
    Xu, Xiaohua
    Lu, Lin
    Qian, Heng
    Zhang, Wei
    Li, Kanwen
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2014, PT II, 2014, 8795 : 1 - 7
  • [50] Semi-supervised generalized eigenvalues classification
    Viola, Marco
    Sangiovanni, Mara
    Toraldo, Gerardo
    Guarracino, Mario R.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2019, 276 (1-2) : 249 - 266