Semi-supervised generalized eigenvalues classification

被引:4
|
作者
Viola, Marco [1 ]
Sangiovanni, Mara [3 ]
Toraldo, Gerardo [2 ]
Guarracino, Mario R. [3 ]
机构
[1] Sapienza Univ Rome, Dept Comp Control & Management Engn, Rome, Italy
[2] Univ Naples Federico II, Dept Math & Applicat, Naples, Italy
[3] Natl Res Council Italy, High Performance Comp & Networking Inst, Naples, Italy
关键词
Semi-supervised classification; Laplacian regularization; Manifold regularization; Generalized eigenvalues classifiers; SUPPORT VECTOR MACHINE; STEEPEST DESCENT; GRADIENT-METHOD; REDUCTION;
D O I
10.1007/s10479-017-2674-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Supervised classification is one of the most powerful techniques to analyze data, when a-priori information is available on the membership of data samples to classes. Since the labeling process can be both expensive and time-consuming, it is interesting to investigate semi-supervised algorithms that can produce classification models taking advantage of unlabeled samples. In this paper we propose LapReGEC, a novel technique that introduces a Laplacian regularization term in a generalized eigenvalue classifier. As a result, we produce models that are both accurate and parsimonious in terms of needed labeled data. We empirically prove that the obtained classifier well compares with other techniques, using as little as 5% of labeled points to compute the models.
引用
收藏
页码:249 / 266
页数:18
相关论文
共 50 条
  • [1] Semi-supervised generalized eigenvalues classification
    Marco Viola
    Mara Sangiovanni
    Gerardo Toraldo
    Mario R. Guarracino
    [J]. Annals of Operations Research, 2019, 276 : 249 - 266
  • [2] Semi-supervised proximal support vector machine via generalized eigenvalues
    Yang, Xu-Bing
    Pan, Zhi-Song
    Chen, Song-Can
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2009, 22 (03): : 349 - 353
  • [3] Combining Semi-supervised Clustering and Classification Under a Generalized Framework
    Jiang, Zhen
    Zhao, Lingyun
    Lu, Yu
    [J]. JOURNAL OF CLASSIFICATION, 2024,
  • [4] Semi-supervised classification trees
    Levatic, Jurica
    Ceci, Michelangelo
    Kocev, Dragi
    Dzeroski, Saso
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2017, 49 (03) : 461 - 486
  • [5] Watersheds for Semi-Supervised Classification
    Challa, Aditya
    Danda, Sravan
    Sagar, B. S. Daya
    Najman, Laurent
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 720 - 724
  • [6] Semi-supervised classification trees
    Jurica Levatić
    Michelangelo Ceci
    Dragi Kocev
    Sašo Džeroski
    [J]. Journal of Intelligent Information Systems, 2017, 49 : 461 - 486
  • [7] Semi-Supervised Learning for ECG Classification
    Rodrigues, Rui
    Couto, Paula
    [J]. 2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [8] Augmentation Learning for Semi-Supervised Classification
    Frommknecht, Tim
    Zipf, Pedro Alves
    Fan, Quanfu
    Shvetsova, Nina
    Kuehne, Hilde
    [J]. PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 85 - 98
  • [9] Semi-Supervised Network Traffic Classification
    Erman, Jeffrey
    Mahanti, Anirban
    Arlitt, Martin
    Cohen, Ira
    Williamson, Carey
    [J]. SIGMETRICS'07: PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON MEASUREMENT & MODELING OF COMPUTER SYSTEMS, 2007, 35 (01): : 369 - 370
  • [10] Semi-supervised classification using bridging
    Chan, Jason
    Koprinska, Irena
    Poon, Josiah
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2008, 17 (03) : 415 - 431