SPARSE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS IN HIGH DIMENSIONS

被引:2
|
作者
Hu, Xiaoyu [1 ]
Yao, Fang [1 ]
机构
[1] Peking Univ, Ctr Stat Sci, Sch Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Basis expansion; multivariate Karhunen-Loe`ve expansion; sparsity regime; LINEAR-REGRESSION; MODELS;
D O I
10.5705/ss.202020.0445
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Existing functional principal component analysis (FPCA) methods are restricted to data with a single or finite number of random functions (much smaller than the sample size n). In this work, we focus on high-dimensional functional processes where the number of random functions p is comparable to, or even much larger than n. Such data are ubiquitous in various fields, such as neuroimaging analysis, and cannot be modeled properly by existing methods. We propose a new algorithm, called sparse FPCA, that models principal eigenfunctions effectively un-der sensible sparsity regimes. The sparsity structure motivates a thresholding rule that is easy to compute by exploiting the relationship between univariate orthonor-mal basis expansions and the multivariate Karhunen-Loe`ve representation. We investigate the theoretical properties of the resulting estimators, and illustrate the performance using simulated and real-data examples.
引用
收藏
页码:1939 / 1960
页数:22
相关论文
共 50 条
  • [21] Joint sparse principal component analysis
    Yi, Shuangyan
    Lai, Zhihui
    He, Zhenyu
    Cheung, Yiu-ming
    Liu, Yang
    PATTERN RECOGNITION, 2017, 61 : 524 - 536
  • [22] Integrative sparse principal component analysis
    Fang, Kuangnan
    Fan, Xinyan
    Zhang, Qingzhao
    Ma, Shuangge
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 1 - 16
  • [23] Automatic sparse principal component analysis
    Park, Heewon
    Yamaguchi, Rui
    Imoto, Seiya
    Miyano, Satoru
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 678 - 697
  • [24] VC Dimensions of Principal Component Analysis
    Yohji Akama
    Kei Irie
    Akitoshi Kawamura
    Yasutaka Uwano
    Discrete & Computational Geometry, 2010, 44 : 589 - 598
  • [25] VC Dimensions of Principal Component Analysis
    Akama, Yohji
    Irie, Kei
    Kawamura, Akitoshi
    Uwano, Yasutaka
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (03) : 589 - 598
  • [26] Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis
    Lin, Nan
    Jiang, Junhai
    Guo, Shicheng
    Xiong, Momiao
    PLOS ONE, 2015, 10 (07):
  • [27] Hierarchical sparse functional principal component analysis for multistage multivariate profile data
    Wang, Kai
    Tsung, Fugee
    IISE TRANSACTIONS, 2021, 53 (01) : 58 - 73
  • [28] Sparse principal component based high-dimensional mediation analysis
    Zhao, Yi
    Lindquist, Martin A.
    Caffo, Brian S.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142
  • [29] Principal Component Analysis With Sparse Fused Loadings
    Guo, Jian
    James, Gareth
    Levina, Elizaveta
    Michailidis, George
    Zhu, Ji
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 930 - 946
  • [30] On General Adaptive Sparse Principal Component Analysis
    Leng, Chenlei
    Wang, Hansheng
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 201 - 215