A Path Integral Formalism for Non-equilibrium Hamiltonian Statistical Systems

被引:8
|
作者
Kleeman, Richard [1 ]
机构
[1] Courant Insitute Math Sci, New York, NY 10012 USA
关键词
Non-equilibrium; Path Integral; Closure; PRINCIPLE; DYNAMICS; DIFFUSION; EQUATIONS;
D O I
10.1007/s10955-014-1149-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A path integral formalism for non-equilibrium systems is proposed based on a manifold of quasi-equilibrium densities. A generalized Boltzmann principle is used to weight manifold paths with the exponential of minus the information discrepancy of a particular manifold path with respect to full Liouvillean evolution. The likelihood of a manifold member at a particular time is termed a consistency distribution and is analogous to a quantum wavefunction. The Lagrangian here is of modified generalized Onsager-Machlup form. For large times and long slow timescales the thermodynamics is of A-ttinger form. The proposed path integral has connections with those occuring in the quantum theory of a particle in an external electromagnetic field. It is however entirely of a Wiener form and so practical to compute. Finally it is shown that providing certain reasonable conditions are met then there exists a unique steady-state consistency distribution.
引用
收藏
页码:1271 / 1297
页数:27
相关论文
共 50 条
  • [11] On the stability of the equilibrium states for Hamiltonian dynamical systems arising in non-equilibrium thermodynamics
    Cimmelli, V. A.
    Oliveri, F.
    Pace, A. R.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (05): : 736 - 748
  • [12] Non-equilibrium statistical mechanics of complex systems: An overview
    R. Luzzi
    Á. R. Vasconoellos
    J. G. Ramos
    [J]. La Rivista del Nuovo Cimento, 2007, 30 : 95 - 157
  • [13] Non-equilibrium statistical mechanics of classical and quantum systems
    Kusnezov, D
    Lutz, E
    Aoki, K
    [J]. DYNAMICS OF DISSIPATION, 2002, 597 : 83 - 108
  • [14] Non-equilibrium statistical mechanics of complex systems: An overview
    Luzzi, R.
    Vasconcellos, A. R.
    Ramos, J. G.
    [J]. RIVISTA DEL NUOVO CIMENTO, 2007, 30 (03): : 95 - 157
  • [15] Statistical physics and fluctuations in ballistic non-equilibrium systems
    Alvarez, F. X.
    Jou, D.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (12) : 2367 - 2372
  • [16] On the fluctuation-dissipation relation in non-equilibrium and non-Hamiltonian systems
    Sarracino, A.
    Vulpiani, A.
    [J]. CHAOS, 2019, 29 (08)
  • [17] Non-equilibrium statistical thermodynamics
    deHemptinne, X
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 1995, 67 : 71 - 80
  • [18] NON-EQUILIBRIUM STATISTICAL MECHANICS
    WALLIS, G
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1964, 227 (1-2): : 140 - &
  • [19] STATISTICAL DESCRIPTION OF NON-EQUILIBRIUM MANY-PARTICLE SYSTEMS
    Lev, B., I
    Zagorodny, A. G.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2020, 65 (12): : 1056 - 1079
  • [20] CONTACT TRANSFORMATIONS OF NON-EQUILIBRIUM THERMODYNAMIC HAMILTONIAN
    ETIM, E
    BASILI, C
    [J]. LETTERE AL NUOVO CIMENTO, 1979, 24 (01): : 29 - 32