A Path Integral Formalism for Non-equilibrium Hamiltonian Statistical Systems

被引:8
|
作者
Kleeman, Richard [1 ]
机构
[1] Courant Insitute Math Sci, New York, NY 10012 USA
关键词
Non-equilibrium; Path Integral; Closure; PRINCIPLE; DYNAMICS; DIFFUSION; EQUATIONS;
D O I
10.1007/s10955-014-1149-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A path integral formalism for non-equilibrium systems is proposed based on a manifold of quasi-equilibrium densities. A generalized Boltzmann principle is used to weight manifold paths with the exponential of minus the information discrepancy of a particular manifold path with respect to full Liouvillean evolution. The likelihood of a manifold member at a particular time is termed a consistency distribution and is analogous to a quantum wavefunction. The Lagrangian here is of modified generalized Onsager-Machlup form. For large times and long slow timescales the thermodynamics is of A-ttinger form. The proposed path integral has connections with those occuring in the quantum theory of a particle in an external electromagnetic field. It is however entirely of a Wiener form and so practical to compute. Finally it is shown that providing certain reasonable conditions are met then there exists a unique steady-state consistency distribution.
引用
收藏
页码:1271 / 1297
页数:27
相关论文
共 50 条
  • [1] A Path Integral Formalism for Non-equilibrium Hamiltonian Statistical Systems
    Richard Kleeman
    [J]. Journal of Statistical Physics, 2015, 158 : 1271 - 1297
  • [2] Fragmentation function in non-equilibrium QCD using closed-time path integral formalism
    Gouranga C. Nayak
    [J]. The European Physical Journal C, 2009, 59 : 891 - 898
  • [3] Fragmentation function in non-equilibrium QCD using closed-time path integral formalism
    Nayak, Gouranga C.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2009, 59 (04): : 891 - 898
  • [4] Non-equilibrium ensembles: A Lagrangian formalism for classical systems
    Haghighi, B
    Maghari, A
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 151 - 156
  • [5] HAMILTONIAN PATH INTEGRAL FORMALISM WITH HIGHER DERIVATIVES
    BARCELOSNETO, J
    NATIVIDADE, CP
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1991, 51 (02): : 313 - 319
  • [6] The theory of irreversible processes: Foundations of a non-equilibrium statistical ensemble formalism
    R. Luzzi
    Á. R. Vasconcellos
    J. G. Ramos
    [J]. La Rivista del Nuovo Cimento, 2006, 29 : 1 - 82
  • [7] The theory of irreversible processes: Foundations of a non-equilibrium statistical ensemble formalism
    Luzzi, R.
    Vasconcellos, A. R.
    Ramos, J. G.
    [J]. RIVISTA DEL NUOVO CIMENTO, 2006, 29 (02): : 1 - 82
  • [8] Non-equilibrium Annealed Damage Phenomena: A Path Integral Approach
    Abaimov, Sergey G.
    [J]. FRONTIERS IN PHYSICS, 2017, 5
  • [9] Grand canonical description of equilibrium and non-equilibrium systems using spin formalism
    Goh, Segun
    Woo, JunHyuk
    Fortin, Jean-Yves
    Choi, MooYoung
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 558