Non-equilibrium Annealed Damage Phenomena: A Path Integral Approach

被引:0
|
作者
Abaimov, Sergey G. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Ctr Design Mfg & Mat, Moscow, Russia
来源
FRONTIERS IN PHYSICS | 2017年 / 5卷
关键词
damage; path approach; fluctuations; fiber-bundle model; statistical physics PACS. 62.20.M-Structural failure of materials-89.75.-k Complex systems-05. Statistical physics; thermodynamics; nonlinear dynamical systems; SELF-ORGANIZED CRITICALITY; LOAD-TRANSFER MODELS; FIBER-BUNDLE MODEL; TIME-DEPENDENT FAILURE; INFINITE IDEAL BUNDLE; MECHANICAL BREAKDOWN; COMPOSITE-MATERIALS; STATISTICAL-MODEL; FIBROUS MATERIALS; THERMAL NOISE;
D O I
10.3389/fphy.2017.00006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the applicability of the path integral of non-equilibrium statistical mechanics to non-equilibrium damage phenomena. As an example, a fiber-bundle model with a thermal noise and a fiber-bundle model with a decay of fibers are considered. Initially, we develop an analogy with the Gibbs formalism of non-equilibrium states. Later, we switch from the approach of non-equilibrium states to the approach of non-equilibrium paths. Behavior of path fluctuations in the system is described in terms of effective temperature parameters. An equation of path as an analog of the equation of state and a law of path-balance as an analog of the law of conservation of energy are developed. Also, a formalism of a free energy potential is developed. For fluctuations of paths in the system, the statistical distribution is found to be Gaussian. Also, we find the "true" order parameters linearizing the matrix of fluctuations. The last question we discuss is the applicability of the phase transition theory to non-equilibrium processes. From near-equilibrium processes to stationary processes (dissipative structures), and then to significantly non-equilibrium processes: Through these steps we generalize the concept of a non-equilibrium phase transition.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Path Integral Formalism for Non-equilibrium Hamiltonian Statistical Systems
    Kleeman, Richard
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) : 1271 - 1297
  • [2] A Path Integral Formalism for Non-equilibrium Hamiltonian Statistical Systems
    Richard Kleeman
    [J]. Journal of Statistical Physics, 2015, 158 : 1271 - 1297
  • [3] NON-EQUILIBRIUM APPROACH TO TRANSPORT PHENOMENA IN QUANTUM CRYSTALS
    BECK, H
    MEIER, PF
    [J]. PHYSIK DER KONDENSITERTEN MATERIE, 1970, 12 (01): : 16 - +
  • [4] NON-EQUILIBRIUM PHENOMENA IN CONDENSATION
    GIONA, AR
    SEBASTIA.E
    [J]. BRITISH CHEMICAL ENGINEERING, 1966, 11 (05): : 334 - &
  • [5] EQUILIBRIUM AND NON-EQUILIBRIUM PHENOMENA IN ARCS AND TORCHES
    Van der Mullen, Joost
    [J]. HIGH TEMPERATURE MATERIAL PROCESSES, 2011, 15 (01): : 75 - 85
  • [6] Equilibrium and non-equilibrium phenomena in arcs and torches
    Van der Mullen, J
    [J]. PROGRESS IN PLASMA PROCESSING OF MATERIALS 2001, 2001, : 139 - 147
  • [7] Equilibrium and non-equilibrium phenomena in arcs and torches
    Van der Mullen, J
    [J]. HIGH TEMPERATURE MATERIAL PROCESSES, 2000, 4 (04): : 515 - 523
  • [8] Vortices and non-equilibrium phenomena in superconductors
    Dobrovolskiy, O. V.
    Bezuglyj, A. I.
    [J]. LOW TEMPERATURE PHYSICS, 2020, 46 (04) : 307 - 308
  • [9] NON-EQUILIBRIUM PHENOMENA AT SEMICONDUCTOR SURFACES
    FRANKL, DR
    [J]. SURFACE SCIENCE, 1969, 13 (01) : 2 - &
  • [10] Non-equilibrium phenomena in thermal plasmas
    Cressault Y.
    Teulet Ph.
    Baumann X.
    Gleizes A.
    [J]. Cressault, Y. (cressault@laplace.univ-tlse.fr), 1600, IOP Publishing Ltd (02):