HE'S FRACTIONAL DERIVATIVE FOR NON-LINEAR FRACTIONAL HEAT TRANSFER EQUATION

被引:30
|
作者
Wang, Kang-Le [1 ]
Liu, San-Yang [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
来源
THERMAL SCIENCE | 2016年 / 20卷 / 03期
关键词
fractal derivative; variational iteration method; fractional complex transform; fractional heat transfer equation; HOMOTOPY PERTURBATION METHOD; DIFFERENTIAL-EQUATIONS; CONDUCTION;
D O I
10.2298/TSCI1603793W
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper adopts He's fractional derivative for non-linear fractional heat transfer equation. The fractional complex transform and He's variational iteration method are used to solve the fractional equation.
引用
收藏
页码:793 / 796
页数:4
相关论文
共 50 条
  • [31] Predictor–corrector for non-linear differential and integral equation with fractal–fractional operators
    Toufik Mekkaoui
    Abdon Atangana
    Seda İğret Araz
    [J]. Engineering with Computers, 2021, 37 : 2359 - 2368
  • [32] On the Problem of Convergence of Series Solution of Non-Linear Fractional Partial Differential Equation
    Singh, Prince
    Sharma, Dinkar
    [J]. RECENT ADVANCES IN FUNDAMENTAL AND APPLIED SCIENCES (RAFAS 2016), 2017, 1860
  • [33] Fractional Non-Linear, Linear and Sublinear Death Processes
    Orsingher, Enzo
    Polito, Federico
    Sakhno, Ludmila
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (01) : 68 - 93
  • [34] Fractional Non-Linear, Linear and Sublinear Death Processes
    Enzo Orsingher
    Federico Polito
    Ludmila Sakhno
    [J]. Journal of Statistical Physics, 2010, 141 : 68 - 93
  • [35] Fractional diffusion and fractional heat equation
    Angulo, JM
    Ruiz-Medina, MD
    Anh, VV
    Grecksch, W
    [J]. ADVANCES IN APPLIED PROBABILITY, 2000, 32 (04) : 1077 - 1099
  • [36] The fractional comparative study of the non-linear directional couplers in non-linear optics
    Asjad, Muhammad Imran
    Faridi, Waqas Ali
    Abualnaja, Khadijah M.
    Jhangeer, Adil
    Abu-Zinadah, Hanaa
    Ahmad, Hijaz
    [J]. RESULTS IN PHYSICS, 2021, 27
  • [37] Atangana-Batogna numerical scheme applied on a linear and non-linear fractional differential equation
    Alkahtani, Badr Saad T.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [38] Atangana-Batogna numerical scheme applied on a linear and non-linear fractional differential equation
    Badr Saad T. Alkahtani
    [J]. The European Physical Journal Plus, 133
  • [39] Fractional Non-linear Regularity, Potential and Balayage
    Shaoguang Shi
    Lei Zhang
    Guanglan Wang
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [40] Some properties of non-linear fractional stochastic heat equations on bounded domains
    Foondun, Mohammud
    Guerngar, Ngartelbaye
    Nane, Erkan
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 86 - 93