Fractional diffusion and fractional heat equation

被引:68
|
作者
Angulo, JM
Ruiz-Medina, MD
Anh, VV
Grecksch, W
机构
[1] Univ Granada, Dept Stat & Operat Res, E-18071 Granada, Spain
[2] Queensland Univ Technol, Ctr Stat Sci & Ind Math, Brisbane, Qld 4001, Australia
[3] Univ Halle Wittenberg, Inst Stochast, D-06120 Halle, Germany
关键词
diffusion processes; stochastic heat equation; Bessel potential; Riesz potential;
D O I
10.1017/S0001867800010478
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a fractional heat equation, where the diffusion operator is the composition of the Bessel and Riesz potentials. Sharp bounds are obtained for the variance of the spatial and temporal increments of the solution. These bounds establish the degree of singularity of the sample paths of the solution. In the case of unbounded spatial domain, a solution is formulated in terms of the Fourier transform of its spatially and temporally homogeneous Green function. The spectral density of the resulting solution is then obtained explicitly. The result implies that the solution of the fractional heat equation may possess spatial long-range dependence asymptotically.
引用
收藏
页码:1077 / 1099
页数:23
相关论文
共 50 条
  • [1] Fractional thermal diffusion and the heat equation
    Gomez, Francisco
    Morales, Luis
    Gonzalez, Mario
    Alvarado, Victor
    Lopez, Guadalupe
    [J]. OPEN PHYSICS, 2015, 13 (01): : 170 - 176
  • [2] Unified fractional kinetic equation and a fractional diffusion equation
    Saxena, RK
    Mathai, AM
    Haubold, HJ
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2004, 290 (3-4) : 299 - 310
  • [3] Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 53 - 62
  • [4] Unified Fractional Kinetic Equation and a Fractional Diffusion Equation
    R.K. Saxena
    A.M. Mathai
    H.J. Haubold
    [J]. Astrophysics and Space Science, 2004, 290 : 299 - 310
  • [5] FRACTIONAL DIFFUSION EQUATION
    SCHNEIDER, WR
    WYSS, W
    [J]. HELVETICA PHYSICA ACTA, 1987, 60 (02): : 358 - 358
  • [6] THE FRACTIONAL DIFFUSION EQUATION
    WYSS, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) : 2782 - 2785
  • [7] Fractional diffusion equation with new fractional operator
    Sene, Ndolane
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2921 - 2926
  • [8] Some properties of the fractional equation of continuity and the fractional diffusion equation
    Fukunaga, Masataka
    [J]. Flow Dynamics, 2006, 832 : 534 - 537
  • [9] A stability result of a fractional heat equation and time fractional diffusion equations governed by fractional fluxes in the Heisenberg group
    Hurtado, E. J.
    Salvatierra, A. P.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3869 - 3889
  • [10] A stability result of a fractional heat equation and time fractional diffusion equations governed by fractional fluxes in the Heisenberg group
    E. J. Hurtado
    A. P. Salvatierra
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3869 - 3889