Fractional thermal diffusion and the heat equation

被引:5
|
作者
Gomez, Francisco [1 ]
Morales, Luis [2 ]
Gonzalez, Mario [2 ]
Alvarado, Victor [1 ]
Lopez, Guadalupe [1 ]
机构
[1] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N,Col Palmira, Cuernavaca 62490, Morelos, Mexico
[2] Univ Veracruzana, Fac Ingn Elect & Comunicac, Poza Rica 93390, Veracruz, Mexico
来源
OPEN PHYSICS | 2015年 / 13卷 / 01期
关键词
anomalous diffusion; Caputo derivative; fractional differential equations; Mittag-Leffler function;
D O I
10.1515/phys-2015-0023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractional calculus is the branch of mathematical analysis that deals with operators interpreted as derivatives and integrals of non-integer order. This mathematical representation is used in the description of non-local behaviors and anomalous complex processes. Fourier's law for the conduction of heat exhibit anomalous behaviors when the order of the derivative is considered as 0 < beta, gamma <= 1 for the space-time domain respectively. In this paper we proposed an alternative representation of the fractional Fourier's law equation, three cases are presented; with fractional spatial derivative, fractional temporal derivative and fractional space-time derivative (both derivatives in simultaneous form). In this analysis we introduce fractional dimensional parameters sigma(x) and sigma(t) with dimensions of meters and seconds respectively. The fractional derivative of Caputo type is considered and the analytical solutions are given in terms of the Mittag-Leffler function. The generalization of the equations in space-time exhibit different cases of anomalous behavior and Non-Fourier heat conduction processes. An illustrative example is presented.
引用
收藏
页码:170 / 176
页数:7
相关论文
共 50 条
  • [1] Fractional diffusion and fractional heat equation
    Angulo, JM
    Ruiz-Medina, MD
    Anh, VV
    Grecksch, W
    [J]. ADVANCES IN APPLIED PROBABILITY, 2000, 32 (04) : 1077 - 1099
  • [2] Fractional heat conduction equation and associated thermal stress
    Povstenko, YZ
    [J]. JOURNAL OF THERMAL STRESSES, 2005, 28 (01) : 83 - 102
  • [3] ESTIMATION OF THE HURST AND DIFFUSION PARAMETERS IN FRACTIONAL STOCHASTIC HEAT EQUATION
    Avetisian, D. A.
    Ralchenko, K., V
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 104 : 61 - 76
  • [4] Reconstruction of the Thermal Conductivity Coefficient in the Time Fractional Diffusion Equation
    Brociek, Rafal
    Slota, Damian
    Witula, Roman
    [J]. ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 239 - 247
  • [5] FRACTIONAL DIFFUSION EQUATION
    SCHNEIDER, WR
    WYSS, W
    [J]. HELVETICA PHYSICA ACTA, 1987, 60 (02): : 358 - 358
  • [6] THE FRACTIONAL DIFFUSION EQUATION
    WYSS, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) : 2782 - 2785
  • [7] Unified fractional kinetic equation and a fractional diffusion equation
    Saxena, RK
    Mathai, AM
    Haubold, HJ
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2004, 290 (3-4) : 299 - 310
  • [8] Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 53 - 62
  • [9] Unified Fractional Kinetic Equation and a Fractional Diffusion Equation
    R.K. Saxena
    A.M. Mathai
    H.J. Haubold
    [J]. Astrophysics and Space Science, 2004, 290 : 299 - 310
  • [10] FRACTIONAL NONLINEAR STOCHASTIC HEAT EQUATION WITH VARIABLE THERMAL CONDUCTIVITY
    Japundzic, Milos
    Rajter-Ciric, Danijela
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) : 1762 - 1782