Some properties of the fractional equation of continuity and the fractional diffusion equation

被引:0
|
作者
Fukunaga, Masataka [1 ]
机构
[1] Nihon Univ, Coll Engn, Tokyo, Japan
来源
Flow Dynamics | 2006年 / 832卷
关键词
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The fractional equation of continuity (FEC) and the fractional diffusion equation (FDE) show peculiar behaviors that are in the opposite sense to those expected from the equation of continuity and the diffusion equation, respectively. The behaviors are interpreted in terms of the memory effect of the fractional time derivatives included in the equations. Some examples are given by solutions of the FDE.
引用
收藏
页码:534 / 537
页数:4
相关论文
共 50 条
  • [1] Continuity of solutions to a nonlinear fractional diffusion equation
    Lorenzo Brasco
    Erik Lindgren
    Martin Strömqvist
    [J]. Journal of Evolution Equations, 2021, 21 : 4319 - 4381
  • [2] Continuity of solutions to a nonlinear fractional diffusion equation
    Brasco, Lorenzo
    Lindgren, Erik
    Stromqvist, Martin
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4319 - 4381
  • [3] Unified fractional kinetic equation and a fractional diffusion equation
    Saxena, RK
    Mathai, AM
    Haubold, HJ
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2004, 290 (3-4) : 299 - 310
  • [4] Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 53 - 62
  • [5] Unified Fractional Kinetic Equation and a Fractional Diffusion Equation
    R.K. Saxena
    A.M. Mathai
    H.J. Haubold
    [J]. Astrophysics and Space Science, 2004, 290 : 299 - 310
  • [6] CONTINUITY WITH RESPECT TO FRACTIONAL ORDER OF THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Nguyen Huy Tuan
    O'Regan, Donal
    Tran Bao Ngoc
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 773 - 793
  • [7] Fractional diffusion and fractional heat equation
    Angulo, JM
    Ruiz-Medina, MD
    Anh, VV
    Grecksch, W
    [J]. ADVANCES IN APPLIED PROBABILITY, 2000, 32 (04) : 1077 - 1099
  • [8] FRACTIONAL DIFFUSION EQUATION
    SCHNEIDER, WR
    WYSS, W
    [J]. HELVETICA PHYSICA ACTA, 1987, 60 (02): : 358 - 358
  • [9] THE FRACTIONAL DIFFUSION EQUATION
    WYSS, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) : 2782 - 2785
  • [10] Fractional diffusion equation with new fractional operator
    Sene, Ndolane
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2921 - 2926